From ac9d6c2021ba66725ecda8f6d6c77cb4488d43a3 Mon Sep 17 00:00:00 2001 From: Leonardo de Moura Date: Fri, 1 Jan 2016 13:52:42 -0800 Subject: [PATCH] refactor(library/data/bool): cleanup bool proofs and fix bxor definition --- library/data/bool.lean | 127 ++++++++++-------- .../blast/recursor/recursor_strategy.cpp | 2 +- src/library/blast/strategies/portfolio.cpp | 9 +- .../lean/interactive/alias.input.expected.out | 10 ++ 4 files changed, 91 insertions(+), 57 deletions(-) diff --git a/library/data/bool.lean b/library/data/bool.lean index 924be9440..6a1e42211 100644 --- a/library/data/bool.lean +++ b/library/data/bool.lean @@ -3,16 +3,14 @@ Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura -/ - import logic.eq -open eq eq.ops decidable namespace bool local attribute bor [reducible] local attribute band [reducible] theorem dichotomy (b : bool) : b = ff ∨ b = tt := - bool.cases_on b (or.inl rfl) (or.inr rfl) + by rec_simp theorem cond_ff [simp] {A : Type} (t e : A) : cond ff t e = e := rfl @@ -20,16 +18,14 @@ namespace bool theorem cond_tt [simp] {A : Type} (t e : A) : cond tt t e = t := rfl - theorem eq_tt_of_ne_ff : ∀ {a : bool}, a ≠ ff → a = tt - | @eq_tt_of_ne_ff tt H := rfl - | @eq_tt_of_ne_ff ff H := absurd rfl H + theorem eq_tt_of_ne_ff : ∀ {a : bool}, a ≠ ff → a = tt := + by rec_simp - theorem eq_ff_of_ne_tt : ∀ {a : bool}, a ≠ tt → a = ff - | @eq_ff_of_ne_tt tt H := absurd rfl H - | @eq_ff_of_ne_tt ff H := rfl + theorem eq_ff_of_ne_tt : ∀ {a : bool}, a ≠ tt → a = ff := + by rec_simp theorem absurd_of_eq_ff_of_eq_tt {B : Prop} {a : bool} (H₁ : a = ff) (H₂ : a = tt) : B := - absurd (H₁⁻¹ ⬝ H₂) ff_ne_tt + by rec_simp theorem tt_bor [simp] (a : bool) : bor tt a = tt := rfl @@ -37,80 +33,67 @@ namespace bool notation a || b := bor a b theorem bor_tt [simp] (a : bool) : a || tt = tt := - bool.cases_on a rfl rfl + by rec_simp theorem ff_bor [simp] (a : bool) : ff || a = a := - bool.cases_on a rfl rfl + by rec_simp theorem bor_ff [simp] (a : bool) : a || ff = a := - bool.cases_on a rfl rfl + by rec_simp theorem bor_self [simp] (a : bool) : a || a = a := - bool.cases_on a rfl rfl + by rec_simp - theorem bor.comm [simp] (a b : bool) : a || b = b || a := - by cases a; repeat (cases b | reflexivity) + theorem bor_comm [simp] (a b : bool) : a || b = b || a := + by rec_simp - theorem bor.assoc [simp] (a b c : bool) : (a || b) || c = a || (b || c) := - match a with - | ff := by rewrite *ff_bor - | tt := by rewrite *tt_bor - end + theorem bor_assoc [simp] (a b c : bool) : (a || b) || c = a || (b || c) := + by rec_simp + + theorem bor_left_comm [simp] (a b c : bool) : a || (b || c) = b || (a || c) := + by rec_simp theorem or_of_bor_eq {a b : bool} : a || b = tt → a = tt ∨ b = tt := - bool.rec_on a - (suppose ff || b = tt, - have b = tt, from !ff_bor ▸ this, - or.inr this) - (suppose tt || b = tt, - or.inl rfl) + by rec_simp theorem bor_inl {a b : bool} (H : a = tt) : a || b = tt := - by rewrite H + by rec_simp theorem bor_inr {a b : bool} (H : b = tt) : a || b = tt := - bool.rec_on a (by rewrite H) (by rewrite H) + by rec_simp theorem ff_band [simp] (a : bool) : ff && a = ff := rfl theorem tt_band [simp] (a : bool) : tt && a = a := - bool.cases_on a rfl rfl + by rec_simp theorem band_ff [simp] (a : bool) : a && ff = ff := - bool.cases_on a rfl rfl + by rec_simp theorem band_tt [simp] (a : bool) : a && tt = a := - bool.cases_on a rfl rfl + by rec_simp theorem band_self [simp] (a : bool) : a && a = a := - bool.cases_on a rfl rfl + by rec_simp - theorem band.comm [simp] (a b : bool) : a && b = b && a := - bool.cases_on a - (bool.cases_on b rfl rfl) - (bool.cases_on b rfl rfl) + theorem band_comm [simp] (a b : bool) : a && b = b && a := + by rec_simp - theorem band.assoc [simp] (a b c : bool) : (a && b) && c = a && (b && c) := - match a with - | ff := by rewrite *ff_band - | tt := by rewrite *tt_band - end + theorem band_assoc [simp] (a b c : bool) : (a && b) && c = a && (b && c) := + by rec_simp + + theorem band_left_comm [simp] (a b c : bool) : a && (b && c) = b && (a && c) := + by rec_simp theorem band_elim_left {a b : bool} (H : a && b = tt) : a = tt := - or.elim (dichotomy a) - (suppose a = ff, - absurd (by inst_simp) ff_ne_tt) - (suppose a = tt, this) + by rec_simp theorem band_intro {a b : bool} (H₁ : a = tt) (H₂ : b = tt) : a && b = tt := - by rewrite [H₁, H₂] + by rec_simp theorem band_elim_right {a b : bool} (H : a && b = tt) : b = tt := - band_elim_left (!band.comm ⬝ H) - - theorem bnot_bnot [simp] (a : bool) : bnot (bnot a) = a := - bool.cases_on a rfl rfl + by rec_simp theorem bnot_false [simp] : bnot ff = tt := rfl @@ -118,11 +101,47 @@ namespace bool theorem bnot_true [simp] : bnot tt = ff := rfl + theorem bnot_bnot [simp] (a : bool) : bnot (bnot a) = a := + by rec_simp + theorem eq_tt_of_bnot_eq_ff {a : bool} : bnot a = ff → a = tt := - bool.cases_on a (by contradiction) (λ h, rfl) + by rec_simp theorem eq_ff_of_bnot_eq_tt {a : bool} : bnot a = tt → a = ff := - bool.cases_on a (λ h, rfl) (by contradiction) + by rec_simp - definition bxor (x:bool) (y:bool) := cond x (bnot y) y + definition bxor : bool → bool → bool + | ff ff := ff + | ff tt := tt + | tt ff := tt + | tt tt := ff + + lemma ff_bxor_ff [simp] : bxor ff ff = ff := rfl + lemma ff_bxor_tt [simp] : bxor ff tt = tt := rfl + lemma tt_bxor_ff [simp] : bxor tt ff = tt := rfl + lemma tt_bxor_tt [simp] : bxor tt tt = ff := rfl + + lemma bxor_self [simp] (a : bool) : bxor a a = ff := + by rec_simp + + lemma bxor_ff [simp] (a : bool) : bxor a ff = a := + by rec_simp + + lemma bxor_tt [simp] (a : bool) : bxor a tt = bnot a := + by rec_simp + + lemma ff_bxor [simp] (a : bool) : bxor ff a = a := + by rec_simp + + lemma tt_bxor [simp] (a : bool) : bxor tt a = bnot a := + by rec_simp + + lemma bxor_comm [simp] (a b : bool) : bxor a b = bxor b a := + by rec_simp + + lemma bxor_assoc [simp] (a b c : bool) : bxor (bxor a b) c = bxor a (bxor b c) := + by rec_simp + + lemma bxor_left_comm [simp] (a b c : bool) : bxor a (bxor b c) = bxor b (bxor a c) := + by rec_simp end bool diff --git a/src/library/blast/recursor/recursor_strategy.cpp b/src/library/blast/recursor/recursor_strategy.cpp index 2352462c5..dd0940a35 100644 --- a/src/library/blast/recursor/recursor_strategy.cpp +++ b/src/library/blast/recursor/recursor_strategy.cpp @@ -146,7 +146,7 @@ strategy rec_and_then(strategy const & S, rec_candidate_selector const & selecto return [=]() { // NOLINT state s = curr_state(); unsigned max_rounds = get_blast_recursion_max_rounds(ios().get_options()); - for (unsigned i = 1; i <= max_rounds; i++) { + for (unsigned i = 0; i <= max_rounds; i++) { lean_trace_search(tout() << "starting recursor strategy with max #" << i << " round(s)\n";); curr_state() = s; if (auto pr = rec_strategy_fn(S, selector, i)()) diff --git a/src/library/blast/strategies/portfolio.cpp b/src/library/blast/strategies/portfolio.cpp index 792c4b92e..2eb333127 100644 --- a/src/library/blast/strategies/portfolio.cpp +++ b/src/library/blast/strategies/portfolio.cpp @@ -7,9 +7,10 @@ Author: Leonardo de Moura #include #include "util/sstream.h" #include "library/blast/actions/assert_cc_action.h" -#include "library/blast/simplifier/simplifier_strategies.h" +#include "library/blast/actions/no_confusion_action.h" #include "library/blast/unit/unit_actions.h" #include "library/blast/forward/ematch.h" +#include "library/blast/simplifier/simplifier_strategies.h" #include "library/blast/recursor/recursor_strategy.h" #include "library/blast/backward/backward_action.h" #include "library/blast/backward/backward_strategy.h" @@ -54,7 +55,11 @@ static optional apply_ematch() { static optional apply_ematch_simp() { flet set(get_config().m_ematch, true); return mk_action_strategy("ematch_simp", - assert_cc_action, + [](hypothesis_idx hidx) { + Try(no_confusion_action(hidx)); + TrySolve(assert_cc_action(hidx)); + return action_result::new_branch(); + }, unit_propagate, ematch_simp_action)(); } diff --git a/tests/lean/interactive/alias.input.expected.out b/tests/lean/interactive/alias.input.expected.out index b7ab8cbea..f1ca174f2 100644 --- a/tests/lean/interactive/alias.input.expected.out +++ b/tests/lean/interactive/alias.input.expected.out @@ -3,11 +3,15 @@ -- BEGINWAIT -- ENDWAIT -- BEGINFINDP +bool.tt_bxor_tt|eq (bool.bxor bool.tt bool.tt) bool.ff +bool.tt_bxor_ff|eq (bool.bxor bool.tt bool.ff) bool.tt bool.bor_tt|∀ (a : bool), eq (bool.bor a bool.tt) bool.tt bool.band_tt|∀ (a : bool), eq (bool.band a bool.tt) a bool.tt|bool +bool.bxor_tt|∀ (a : bool), eq (bool.bxor a bool.tt) (bool.bnot a) bool.eq_tt_of_bnot_eq_ff|eq (bool.bnot ?a) bool.ff → eq ?a bool.tt bool.eq_ff_of_bnot_eq_tt|eq (bool.bnot ?a) bool.tt → eq ?a bool.ff +bool.ff_bxor_tt|eq (bool.bxor bool.ff bool.tt) bool.tt bool.absurd_of_eq_ff_of_eq_tt|eq ?a bool.ff → eq ?a bool.tt → ?B bool.eq_tt_of_ne_ff|ne ?a bool.ff → eq ?a bool.tt tactic.with_attributes_tac|tactic.expr → tactic.identifier_list → tactic → tactic @@ -15,6 +19,7 @@ bool.tt_band|∀ (a : bool), eq (bool.band bool.tt a) a bool.cond_tt|∀ (t e : ?A), eq (bool.cond bool.tt t e) t bool.ff_ne_tt|eq bool.ff bool.tt → false bool.eq_ff_of_ne_tt|ne ?a bool.tt → eq ?a bool.ff +bool.tt_bxor|∀ (a : bool), eq (bool.bxor bool.tt a) (bool.bnot a) bool.tt_bor|∀ (a : bool), eq (bool.bor bool.tt a) bool.tt -- ENDFINDP -- BEGINWAIT @@ -23,10 +28,15 @@ bool.tt_bor|∀ (a : bool), eq (bool.bor bool.tt a) bool.tt tt|bool tt_bor|∀ (a : bool), eq (bor tt a) tt tt_band|∀ (a : bool), eq (band tt a) a +tt_bxor|∀ (a : bool), eq (bxor tt a) (bnot a) +tt_bxor_tt|eq (bxor tt tt) ff +tt_bxor_ff|eq (bxor tt ff) tt bor_tt|∀ (a : bool), eq (bor a tt) tt band_tt|∀ (a : bool), eq (band a tt) a +bxor_tt|∀ (a : bool), eq (bxor a tt) (bnot a) eq_tt_of_bnot_eq_ff|eq (bnot ?a) ff → eq ?a tt eq_ff_of_bnot_eq_tt|eq (bnot ?a) tt → eq ?a ff +ff_bxor_tt|eq (bxor ff tt) tt absurd_of_eq_ff_of_eq_tt|eq ?a ff → eq ?a tt → ?B eq_tt_of_ne_ff|ne ?a ff → eq ?a tt tactic.with_attributes_tac|tactic.expr → tactic.identifier_list → tactic → tactic