doc(examples/standard/constable): add section delimiters
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
fb56767e07
commit
acf8a4261b
1 changed files with 6 additions and 3 deletions
|
@ -1,8 +1,9 @@
|
||||||
-- Theorems/Exercises from "Logical Investigations, with the Nuprl Proof Assistant"
|
-- Theorems/Exercises from "Logical Investigations, with the Nuprl Proof Assistant"
|
||||||
-- by Robert L. Constable and Anne Trostle
|
-- by Robert L. Constable and Anne Trostle
|
||||||
-- http://www.nuprl.org/MathLibrary/LogicalInvestigations/
|
-- http://www.nuprl.org/MathLibrary/LogicalInvestigations/
|
||||||
import standard
|
import logic
|
||||||
|
|
||||||
|
-- 2. The Minimal Implicational Calculus
|
||||||
theorem thm1 {A B : Prop} : A → B → A
|
theorem thm1 {A B : Prop} : A → B → A
|
||||||
:= assume Ha Hb, Ha
|
:= assume Ha Hb, Ha
|
||||||
|
|
||||||
|
@ -14,6 +15,7 @@ theorem thm3 {A B C : Prop} : (A → B) → (B → C) → (A → C)
|
||||||
:= assume Hab Hbc Ha,
|
:= assume Hab Hbc Ha,
|
||||||
Hbc (Hab Ha)
|
Hbc (Hab Ha)
|
||||||
|
|
||||||
|
-- 3. False Propositions and Negation
|
||||||
theorem thm4 {P Q : Prop} : ¬P → P → Q
|
theorem thm4 {P Q : Prop} : ¬P → P → Q
|
||||||
:= assume Hnp Hp,
|
:= assume Hnp Hp,
|
||||||
absurd_elim Q Hp Hnp
|
absurd_elim Q Hp Hnp
|
||||||
|
@ -37,6 +39,7 @@ theorem thm8 {P Q : Prop} : ¬(P → Q) → (P → ¬Q)
|
||||||
have H : P → Q, from assume H', Hq,
|
have H : P → Q, from assume H', Hq,
|
||||||
absurd H Hn
|
absurd H Hn
|
||||||
|
|
||||||
|
-- 4. Conjunction and Disjunction
|
||||||
theorem thm9 {P : Prop} : (P ∨ ¬P) → (¬¬P → P)
|
theorem thm9 {P : Prop} : (P ∨ ¬P) → (¬¬P → P)
|
||||||
:= assume (em : P ∨ ¬P) (Hnn : ¬¬P),
|
:= assume (em : P ∨ ¬P) (Hnn : ¬¬P),
|
||||||
or_elim em
|
or_elim em
|
||||||
|
@ -93,9 +96,9 @@ theorem thm16 {P Q : Prop} : (P → Q) ∧ ((P ∨ ¬P) ∨ (Q ∨ ¬Q)) → ¬P
|
||||||
(assume Hq : Q, or_inr Hq)
|
(assume Hq : Q, or_inr Hq)
|
||||||
(assume Hnq : ¬Q, or_inl (mt Hpq Hnq)))
|
(assume Hnq : ¬Q, or_inl (mt Hpq Hnq)))
|
||||||
|
|
||||||
|
-- 5. First-Order Logic: All and Exists
|
||||||
section
|
section
|
||||||
parameters {T : Type} {C : Prop} {P : T → Prop}
|
parameters {T : Type} {C : Prop} {P : T → Prop}
|
||||||
|
|
||||||
theorem thm17a : (C → ∀x, P x) → (∀x, C → P x)
|
theorem thm17a : (C → ∀x, P x) → (∀x, C → P x)
|
||||||
:= assume H : C → ∀x, P x,
|
:= assume H : C → ∀x, P x,
|
||||||
take x : T, assume Hc : C,
|
take x : T, assume Hc : C,
|
||||||
|
@ -209,4 +212,4 @@ theorem thm24b : (∃x : T, true) → (∀x, P x ∧ C) → (∀x, P x) ∧ C
|
||||||
have Hx : ∀x, P x, from take x, and_elim_left (H x),
|
have Hx : ∀x, P x, from take x, and_elim_left (H x),
|
||||||
and_intro Hx Hc
|
and_intro Hx Hc
|
||||||
|
|
||||||
end -- of section
|
end -- of section
|
||||||
|
|
Loading…
Reference in a new issue