feat(frontends/lean): hide 'explicit' version of objects with implicit arguments
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
bff5a6bfb2
commit
ad3f771b1d
7 changed files with 39 additions and 39 deletions
|
@ -1789,6 +1789,11 @@ class parser::imp {
|
||||||
regular(m_io_state) << r << endl;
|
regular(m_io_state) << r << endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/** \brief Return true iff \c obj is an object that should be ignored by the Show command */
|
||||||
|
bool is_hidden_object(object const & obj) const {
|
||||||
|
return obj.is_definition() && is_explicit(m_env, obj.get_name());
|
||||||
|
}
|
||||||
|
|
||||||
/** \brief Parse
|
/** \brief Parse
|
||||||
'Show' expr
|
'Show' expr
|
||||||
'Show' Environment [num]
|
'Show' Environment [num]
|
||||||
|
@ -1800,21 +1805,24 @@ class parser::imp {
|
||||||
name opt_id = curr_name();
|
name opt_id = curr_name();
|
||||||
next();
|
next();
|
||||||
if (opt_id == g_env_kwd) {
|
if (opt_id == g_env_kwd) {
|
||||||
|
unsigned i;
|
||||||
if (curr_is_nat()) {
|
if (curr_is_nat()) {
|
||||||
unsigned i = parse_unsigned("invalid argument, value does not fit in a machine integer");
|
i = parse_unsigned("invalid argument, value does not fit in a machine integer");
|
||||||
|
} else {
|
||||||
|
i = std::numeric_limits<unsigned>::max();
|
||||||
|
}
|
||||||
auto end = m_env->end_objects();
|
auto end = m_env->end_objects();
|
||||||
auto beg = m_env->begin_objects();
|
auto beg = m_env->begin_objects();
|
||||||
auto it = end;
|
auto it = end;
|
||||||
while (it != beg && i != 0) {
|
while (it != beg && i != 0) {
|
||||||
--i;
|
|
||||||
--it;
|
--it;
|
||||||
|
if (!is_hidden_object(*it))
|
||||||
|
--i;
|
||||||
}
|
}
|
||||||
for (; it != end; ++it) {
|
for (; it != end; ++it) {
|
||||||
|
if (!is_hidden_object(*it))
|
||||||
regular(m_io_state) << *it << endl;
|
regular(m_io_state) << *it << endl;
|
||||||
}
|
}
|
||||||
} else {
|
|
||||||
regular(m_io_state) << m_env << endl;
|
|
||||||
}
|
|
||||||
} else if (opt_id == g_options_kwd) {
|
} else if (opt_id == g_options_kwd) {
|
||||||
regular(m_io_state) << pp(m_io_state.get_options()) << endl;
|
regular(m_io_state) << pp(m_io_state.get_options()) << endl;
|
||||||
} else {
|
} else {
|
||||||
|
|
|
@ -59,6 +59,12 @@ io_state_stream const & operator<<(io_state_stream const & out, object const & o
|
||||||
return out;
|
return out;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
io_state_stream const & operator<<(io_state_stream const & out, environment const & env) {
|
||||||
|
options const & opts = out.get_options();
|
||||||
|
out.get_stream() << mk_pair(out.get_formatter()(env, opts), opts);
|
||||||
|
return out;
|
||||||
|
}
|
||||||
|
|
||||||
io_state_stream const & operator<<(io_state_stream const & out, kernel_exception const & ex) {
|
io_state_stream const & operator<<(io_state_stream const & out, kernel_exception const & ex) {
|
||||||
options const & opts = out.get_options();
|
options const & opts = out.get_options();
|
||||||
out.get_stream() << mk_pair(ex.pp(out.get_formatter(), opts), opts);
|
out.get_stream() << mk_pair(ex.pp(out.get_formatter(), opts), opts);
|
||||||
|
|
|
@ -84,6 +84,7 @@ class kernel_exception;
|
||||||
io_state_stream const & operator<<(io_state_stream const & out, endl_class);
|
io_state_stream const & operator<<(io_state_stream const & out, endl_class);
|
||||||
io_state_stream const & operator<<(io_state_stream const & out, expr const & e);
|
io_state_stream const & operator<<(io_state_stream const & out, expr const & e);
|
||||||
io_state_stream const & operator<<(io_state_stream const & out, object const & obj);
|
io_state_stream const & operator<<(io_state_stream const & out, object const & obj);
|
||||||
|
io_state_stream const & operator<<(io_state_stream const & out, environment const & env);
|
||||||
io_state_stream const & operator<<(io_state_stream const & out, kernel_exception const & ex);
|
io_state_stream const & operator<<(io_state_stream const & out, kernel_exception const & ex);
|
||||||
template<typename T> io_state_stream const & operator<<(io_state_stream const & out, T const & t) {
|
template<typename T> io_state_stream const & operator<<(io_state_stream const & out, T const & t) {
|
||||||
out.get_stream() << t;
|
out.get_stream() << t;
|
||||||
|
|
|
@ -5,24 +5,17 @@
|
||||||
Assumed: R
|
Assumed: R
|
||||||
Proved: R2
|
Proved: R2
|
||||||
Set: lean::pp::implicit
|
Set: lean::pp::implicit
|
||||||
|
Coercion int_to_real
|
||||||
|
Coercion nat_to_real
|
||||||
|
Definition SubstP : Π (A : Type U) (a b : A) (P : A → Bool), P a → a == b → P b := Subst::explicit
|
||||||
Variable C {A B : Type} (H : eq::explicit Type A B) (a : A) : B
|
Variable C {A B : Type} (H : eq::explicit Type A B) (a : A) : B
|
||||||
Definition C::explicit (A B : Type) (H : A = B) (a : A) : B := C H a
|
|
||||||
Variable D {A A' : Type} {B : A → Type} {B' : A' → Type} (H : eq::explicit Type (Π x : A, B x) (Π x : A', B' x)) :
|
Variable D {A A' : Type} {B : A → Type} {B' : A' → Type} (H : eq::explicit Type (Π x : A, B x) (Π x : A', B' x)) :
|
||||||
eq::explicit Type A A'
|
eq::explicit Type A A'
|
||||||
Definition D::explicit (A A' : Type) (B : A → Type) (B' : A' → Type) (H : (Π x : A, B x) = (Π x : A', B' x)) : A =
|
|
||||||
A' :=
|
|
||||||
D H
|
|
||||||
Variable R {A A' : Type}
|
Variable R {A A' : Type}
|
||||||
{B : A → Type}
|
{B : A → Type}
|
||||||
{B' : A' → Type}
|
{B' : A' → Type}
|
||||||
(H : eq::explicit Type (Π x : A, B x) (Π x : A', B' x))
|
(H : eq::explicit Type (Π x : A, B x) (Π x : A', B' x))
|
||||||
(a : A) :
|
(a : A) :
|
||||||
eq::explicit Type (B a) (B' (C::explicit A A' (D::explicit A A' (λ x : A, B x) (λ x : A', B' x) H) a))
|
eq::explicit Type (B a) (B' (C::explicit A A' (D::explicit A A' (λ x : A, B x) (λ x : A', B' x) H) a))
|
||||||
Definition R::explicit (A A' : Type)
|
|
||||||
(B : A → Type)
|
|
||||||
(B' : A' → Type)
|
|
||||||
(H : (Π x : A, B x) = (Π x : A', B' x))
|
|
||||||
(a : A) : B a = B' (C (D H) a) :=
|
|
||||||
R H a
|
|
||||||
Theorem R2 (A1 A2 B1 B2 : Type) (H : eq::explicit Type (A1 → B1) (A2 → B2)) (a : A1) : eq::explicit Type B1 B2 :=
|
Theorem R2 (A1 A2 B1 B2 : Type) (H : eq::explicit Type (A1 → B1) (A2 → B2)) (a : A1) : eq::explicit Type B1 B2 :=
|
||||||
R::explicit A1 A2 (λ x : A1, B1) (λ x : A2, B2) H a
|
R::explicit A1 A2 (λ x : A1, B1) (λ x : A2, B2) H a
|
||||||
|
|
|
@ -5,24 +5,17 @@
|
||||||
Assumed: R
|
Assumed: R
|
||||||
Proved: R2
|
Proved: R2
|
||||||
Set: lean::pp::implicit
|
Set: lean::pp::implicit
|
||||||
|
Coercion int_to_real
|
||||||
|
Coercion nat_to_real
|
||||||
|
Definition SubstP : Π (A : Type U) (a b : A) (P : A → Bool), P a → a == b → P b := Subst::explicit
|
||||||
Variable C {A B : Type} (H : eq::explicit Type A B) (a : A) : B
|
Variable C {A B : Type} (H : eq::explicit Type A B) (a : A) : B
|
||||||
Definition C::explicit (A B : Type) (H : A = B) (a : A) : B := C H a
|
|
||||||
Variable D {A A' : Type} {B : A → Type} {B' : A' → Type} (H : eq::explicit Type (Π x : A, B x) (Π x : A', B' x)) :
|
Variable D {A A' : Type} {B : A → Type} {B' : A' → Type} (H : eq::explicit Type (Π x : A, B x) (Π x : A', B' x)) :
|
||||||
eq::explicit Type A A'
|
eq::explicit Type A A'
|
||||||
Definition D::explicit (A A' : Type) (B : A → Type) (B' : A' → Type) (H : (Π x : A, B x) = (Π x : A', B' x)) : A =
|
|
||||||
A' :=
|
|
||||||
D H
|
|
||||||
Variable R {A A' : Type}
|
Variable R {A A' : Type}
|
||||||
{B : A → Type}
|
{B : A → Type}
|
||||||
{B' : A' → Type}
|
{B' : A' → Type}
|
||||||
(H : eq::explicit Type (Π x : A, B x) (Π x : A', B' x))
|
(H : eq::explicit Type (Π x : A, B x) (Π x : A', B' x))
|
||||||
(a : A) :
|
(a : A) :
|
||||||
eq::explicit Type (B a) (B' (C::explicit A A' (D::explicit A A' (λ x : A, B x) (λ x : A', B' x) H) a))
|
eq::explicit Type (B a) (B' (C::explicit A A' (D::explicit A A' (λ x : A, B x) (λ x : A', B' x) H) a))
|
||||||
Definition R::explicit (A A' : Type)
|
|
||||||
(B : A → Type)
|
|
||||||
(B' : A' → Type)
|
|
||||||
(H : (Π x : A, B x) = (Π x : A', B' x))
|
|
||||||
(a : A) : B a = B' (C (D H) a) :=
|
|
||||||
R H a
|
|
||||||
Theorem R2 (A1 A2 B1 B2 : Type) (H : eq::explicit Type (A1 → B1) (A2 → B2)) (a : A1) : eq::explicit Type B1 B2 :=
|
Theorem R2 (A1 A2 B1 B2 : Type) (H : eq::explicit Type (A1 → B1) (A2 → B2)) (a : A1) : eq::explicit Type B1 B2 :=
|
||||||
R::explicit A1 A2 (λ x : A1, B1) (λ x : A2, B2) H a
|
R::explicit A1 A2 (λ x : A1, B1) (λ x : A2, B2) H a
|
||||||
|
|
|
@ -12,19 +12,18 @@
|
||||||
Defined: update
|
Defined: update
|
||||||
Defined: select
|
Defined: select
|
||||||
Defined: map
|
Defined: map
|
||||||
|
Variable one : N
|
||||||
|
Variable two : N
|
||||||
|
Variable three : N
|
||||||
|
Infix 50 < : lt
|
||||||
Axiom two_lt_three : two < three
|
Axiom two_lt_three : two < three
|
||||||
Definition vector (A : Type) (n : N) : Type := Π (i : N), i < n → A
|
Definition vector (A : Type) (n : N) : Type := Π (i : N), i < n → A
|
||||||
Definition const {A : Type} (n : N) (d : A) : vector A n := λ (i : N) (H : i < n), d
|
Definition const {A : Type} (n : N) (d : A) : vector A n := λ (i : N) (H : i < n), d
|
||||||
Definition const::explicit (A : Type) (n : N) (d : A) : vector A n := const n d
|
|
||||||
Definition update {A : Type} {n : N} (v : vector A n) (i : N) (d : A) : vector A n :=
|
Definition update {A : Type} {n : N} (v : vector A n) (i : N) (d : A) : vector A n :=
|
||||||
λ (j : N) (H : j < n), if (j = i) d (v j H)
|
λ (j : N) (H : j < n), if (j = i) d (v j H)
|
||||||
Definition update::explicit (A : Type) (n : N) (v : vector A n) (i : N) (d : A) : vector A n := update v i d
|
|
||||||
Definition select {A : Type} {n : N} (v : vector A n) (i : N) (H : i < n) : A := v i H
|
Definition select {A : Type} {n : N} (v : vector A n) (i : N) (H : i < n) : A := v i H
|
||||||
Definition select::explicit (A : Type) (n : N) (v : vector A n) (i : N) (H : i < n) : A := select v i H
|
|
||||||
Definition map {A B C : Type} {n : N} (f : A → B → C) (v1 : vector A n) (v2 : vector B n) : vector C n :=
|
Definition map {A B C : Type} {n : N} (f : A → B → C) (v1 : vector A n) (v2 : vector B n) : vector C n :=
|
||||||
λ (i : N) (H : i < n), f (v1 i H) (v2 i H)
|
λ (i : N) (H : i < n), f (v1 i H) (v2 i H)
|
||||||
Definition map::explicit (A B C : Type) (n : N) (f : A → B → C) (v1 : vector A n) (v2 : vector B n) : vector C n :=
|
|
||||||
map f v1 v2
|
|
||||||
select (update (const three ⊥) two ⊤) two two_lt_three : Bool
|
select (update (const three ⊥) two ⊤) two two_lt_three : Bool
|
||||||
if (two == two) ⊤ ⊥
|
if (two == two) ⊤ ⊥
|
||||||
update (const three ⊥) two ⊤ : vector Bool three
|
update (const three ⊥) two ⊤ : vector Bool three
|
||||||
|
|
|
@ -4,6 +4,7 @@
|
||||||
Assumed: h
|
Assumed: h
|
||||||
Proved: CongrH
|
Proved: CongrH
|
||||||
Set: lean::pp::implicit
|
Set: lean::pp::implicit
|
||||||
|
Variable h : N → N → N
|
||||||
Theorem CongrH {a1 a2 b1 b2 : N} (H1 : eq::explicit N a1 b1) (H2 : eq::explicit N a2 b2) : eq::explicit
|
Theorem CongrH {a1 a2 b1 b2 : N} (H1 : eq::explicit N a1 b1) (H2 : eq::explicit N a2 b2) : eq::explicit
|
||||||
N
|
N
|
||||||
(h a1 a2)
|
(h a1 a2)
|
||||||
|
@ -17,10 +18,9 @@ Theorem CongrH {a1 a2 b1 b2 : N} (H1 : eq::explicit N a1 b1) (H2 : eq::explicit
|
||||||
b2
|
b2
|
||||||
(Congr::explicit N (λ x : N, N → N) h h a1 b1 (Refl::explicit (N → N → N) h) H1)
|
(Congr::explicit N (λ x : N, N → N) h h a1 b1 (Refl::explicit (N → N → N) h) H1)
|
||||||
H2
|
H2
|
||||||
Theorem CongrH::explicit (a1 a2 b1 b2 : N) (H1 : a1 = b1) (H2 : a2 = b2) : h a1 a2 = h b1 b2 := CongrH H1 H2
|
|
||||||
Set: lean::pp::implicit
|
Set: lean::pp::implicit
|
||||||
|
Variable h : N → N → N
|
||||||
Theorem CongrH {a1 a2 b1 b2 : N} (H1 : a1 = b1) (H2 : a2 = b2) : h a1 a2 = h b1 b2 := Congr (Congr (Refl h) H1) H2
|
Theorem CongrH {a1 a2 b1 b2 : N} (H1 : a1 = b1) (H2 : a2 = b2) : h a1 a2 = h b1 b2 := Congr (Congr (Refl h) H1) H2
|
||||||
Theorem CongrH::explicit (a1 a2 b1 b2 : N) (H1 : a1 = b1) (H2 : a2 = b2) : h a1 a2 = h b1 b2 := CongrH H1 H2
|
|
||||||
Proved: Example1
|
Proved: Example1
|
||||||
Set: lean::pp::implicit
|
Set: lean::pp::implicit
|
||||||
Theorem Example1 (a b c d : N)
|
Theorem Example1 (a b c d : N)
|
||||||
|
|
Loading…
Reference in a new issue