feat(frontends/lean): hide 'explicit' version of objects with implicit arguments

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2013-12-19 13:12:39 -08:00
parent bff5a6bfb2
commit ad3f771b1d
7 changed files with 39 additions and 39 deletions

View file

@ -1789,6 +1789,11 @@ class parser::imp {
regular(m_io_state) << r << endl; regular(m_io_state) << r << endl;
} }
/** \brief Return true iff \c obj is an object that should be ignored by the Show command */
bool is_hidden_object(object const & obj) const {
return obj.is_definition() && is_explicit(m_env, obj.get_name());
}
/** \brief Parse /** \brief Parse
'Show' expr 'Show' expr
'Show' Environment [num] 'Show' Environment [num]
@ -1800,21 +1805,24 @@ class parser::imp {
name opt_id = curr_name(); name opt_id = curr_name();
next(); next();
if (opt_id == g_env_kwd) { if (opt_id == g_env_kwd) {
unsigned i;
if (curr_is_nat()) { if (curr_is_nat()) {
unsigned i = parse_unsigned("invalid argument, value does not fit in a machine integer"); i = parse_unsigned("invalid argument, value does not fit in a machine integer");
} else {
i = std::numeric_limits<unsigned>::max();
}
auto end = m_env->end_objects(); auto end = m_env->end_objects();
auto beg = m_env->begin_objects(); auto beg = m_env->begin_objects();
auto it = end; auto it = end;
while (it != beg && i != 0) { while (it != beg && i != 0) {
--i;
--it; --it;
if (!is_hidden_object(*it))
--i;
} }
for (; it != end; ++it) { for (; it != end; ++it) {
if (!is_hidden_object(*it))
regular(m_io_state) << *it << endl; regular(m_io_state) << *it << endl;
} }
} else {
regular(m_io_state) << m_env << endl;
}
} else if (opt_id == g_options_kwd) { } else if (opt_id == g_options_kwd) {
regular(m_io_state) << pp(m_io_state.get_options()) << endl; regular(m_io_state) << pp(m_io_state.get_options()) << endl;
} else { } else {

View file

@ -59,6 +59,12 @@ io_state_stream const & operator<<(io_state_stream const & out, object const & o
return out; return out;
} }
io_state_stream const & operator<<(io_state_stream const & out, environment const & env) {
options const & opts = out.get_options();
out.get_stream() << mk_pair(out.get_formatter()(env, opts), opts);
return out;
}
io_state_stream const & operator<<(io_state_stream const & out, kernel_exception const & ex) { io_state_stream const & operator<<(io_state_stream const & out, kernel_exception const & ex) {
options const & opts = out.get_options(); options const & opts = out.get_options();
out.get_stream() << mk_pair(ex.pp(out.get_formatter(), opts), opts); out.get_stream() << mk_pair(ex.pp(out.get_formatter(), opts), opts);

View file

@ -84,6 +84,7 @@ class kernel_exception;
io_state_stream const & operator<<(io_state_stream const & out, endl_class); io_state_stream const & operator<<(io_state_stream const & out, endl_class);
io_state_stream const & operator<<(io_state_stream const & out, expr const & e); io_state_stream const & operator<<(io_state_stream const & out, expr const & e);
io_state_stream const & operator<<(io_state_stream const & out, object const & obj); io_state_stream const & operator<<(io_state_stream const & out, object const & obj);
io_state_stream const & operator<<(io_state_stream const & out, environment const & env);
io_state_stream const & operator<<(io_state_stream const & out, kernel_exception const & ex); io_state_stream const & operator<<(io_state_stream const & out, kernel_exception const & ex);
template<typename T> io_state_stream const & operator<<(io_state_stream const & out, T const & t) { template<typename T> io_state_stream const & operator<<(io_state_stream const & out, T const & t) {
out.get_stream() << t; out.get_stream() << t;

View file

@ -5,24 +5,17 @@
Assumed: R Assumed: R
Proved: R2 Proved: R2
Set: lean::pp::implicit Set: lean::pp::implicit
Coercion int_to_real
Coercion nat_to_real
Definition SubstP : Π (A : Type U) (a b : A) (P : A → Bool), P a → a == b → P b := Subst::explicit
Variable C {A B : Type} (H : eq::explicit Type A B) (a : A) : B Variable C {A B : Type} (H : eq::explicit Type A B) (a : A) : B
Definition C::explicit (A B : Type) (H : A = B) (a : A) : B := C H a
Variable D {A A' : Type} {B : A → Type} {B' : A' → Type} (H : eq::explicit Type (Π x : A, B x) (Π x : A', B' x)) : Variable D {A A' : Type} {B : A → Type} {B' : A' → Type} (H : eq::explicit Type (Π x : A, B x) (Π x : A', B' x)) :
eq::explicit Type A A' eq::explicit Type A A'
Definition D::explicit (A A' : Type) (B : A → Type) (B' : A' → Type) (H : (Π x : A, B x) = (Π x : A', B' x)) : A =
A' :=
D H
Variable R {A A' : Type} Variable R {A A' : Type}
{B : A → Type} {B : A → Type}
{B' : A' → Type} {B' : A' → Type}
(H : eq::explicit Type (Π x : A, B x) (Π x : A', B' x)) (H : eq::explicit Type (Π x : A, B x) (Π x : A', B' x))
(a : A) : (a : A) :
eq::explicit Type (B a) (B' (C::explicit A A' (D::explicit A A' (λ x : A, B x) (λ x : A', B' x) H) a)) eq::explicit Type (B a) (B' (C::explicit A A' (D::explicit A A' (λ x : A, B x) (λ x : A', B' x) H) a))
Definition R::explicit (A A' : Type)
(B : A → Type)
(B' : A' → Type)
(H : (Π x : A, B x) = (Π x : A', B' x))
(a : A) : B a = B' (C (D H) a) :=
R H a
Theorem R2 (A1 A2 B1 B2 : Type) (H : eq::explicit Type (A1 → B1) (A2 → B2)) (a : A1) : eq::explicit Type B1 B2 := Theorem R2 (A1 A2 B1 B2 : Type) (H : eq::explicit Type (A1 → B1) (A2 → B2)) (a : A1) : eq::explicit Type B1 B2 :=
R::explicit A1 A2 (λ x : A1, B1) (λ x : A2, B2) H a R::explicit A1 A2 (λ x : A1, B1) (λ x : A2, B2) H a

View file

@ -5,24 +5,17 @@
Assumed: R Assumed: R
Proved: R2 Proved: R2
Set: lean::pp::implicit Set: lean::pp::implicit
Coercion int_to_real
Coercion nat_to_real
Definition SubstP : Π (A : Type U) (a b : A) (P : A → Bool), P a → a == b → P b := Subst::explicit
Variable C {A B : Type} (H : eq::explicit Type A B) (a : A) : B Variable C {A B : Type} (H : eq::explicit Type A B) (a : A) : B
Definition C::explicit (A B : Type) (H : A = B) (a : A) : B := C H a
Variable D {A A' : Type} {B : A → Type} {B' : A' → Type} (H : eq::explicit Type (Π x : A, B x) (Π x : A', B' x)) : Variable D {A A' : Type} {B : A → Type} {B' : A' → Type} (H : eq::explicit Type (Π x : A, B x) (Π x : A', B' x)) :
eq::explicit Type A A' eq::explicit Type A A'
Definition D::explicit (A A' : Type) (B : A → Type) (B' : A' → Type) (H : (Π x : A, B x) = (Π x : A', B' x)) : A =
A' :=
D H
Variable R {A A' : Type} Variable R {A A' : Type}
{B : A → Type} {B : A → Type}
{B' : A' → Type} {B' : A' → Type}
(H : eq::explicit Type (Π x : A, B x) (Π x : A', B' x)) (H : eq::explicit Type (Π x : A, B x) (Π x : A', B' x))
(a : A) : (a : A) :
eq::explicit Type (B a) (B' (C::explicit A A' (D::explicit A A' (λ x : A, B x) (λ x : A', B' x) H) a)) eq::explicit Type (B a) (B' (C::explicit A A' (D::explicit A A' (λ x : A, B x) (λ x : A', B' x) H) a))
Definition R::explicit (A A' : Type)
(B : A → Type)
(B' : A' → Type)
(H : (Π x : A, B x) = (Π x : A', B' x))
(a : A) : B a = B' (C (D H) a) :=
R H a
Theorem R2 (A1 A2 B1 B2 : Type) (H : eq::explicit Type (A1 → B1) (A2 → B2)) (a : A1) : eq::explicit Type B1 B2 := Theorem R2 (A1 A2 B1 B2 : Type) (H : eq::explicit Type (A1 → B1) (A2 → B2)) (a : A1) : eq::explicit Type B1 B2 :=
R::explicit A1 A2 (λ x : A1, B1) (λ x : A2, B2) H a R::explicit A1 A2 (λ x : A1, B1) (λ x : A2, B2) H a

View file

@ -12,19 +12,18 @@
Defined: update Defined: update
Defined: select Defined: select
Defined: map Defined: map
Variable one : N
Variable two : N
Variable three : N
Infix 50 < : lt
Axiom two_lt_three : two < three Axiom two_lt_three : two < three
Definition vector (A : Type) (n : N) : Type := Π (i : N), i < n → A Definition vector (A : Type) (n : N) : Type := Π (i : N), i < n → A
Definition const {A : Type} (n : N) (d : A) : vector A n := λ (i : N) (H : i < n), d Definition const {A : Type} (n : N) (d : A) : vector A n := λ (i : N) (H : i < n), d
Definition const::explicit (A : Type) (n : N) (d : A) : vector A n := const n d
Definition update {A : Type} {n : N} (v : vector A n) (i : N) (d : A) : vector A n := Definition update {A : Type} {n : N} (v : vector A n) (i : N) (d : A) : vector A n :=
λ (j : N) (H : j < n), if (j = i) d (v j H) λ (j : N) (H : j < n), if (j = i) d (v j H)
Definition update::explicit (A : Type) (n : N) (v : vector A n) (i : N) (d : A) : vector A n := update v i d
Definition select {A : Type} {n : N} (v : vector A n) (i : N) (H : i < n) : A := v i H Definition select {A : Type} {n : N} (v : vector A n) (i : N) (H : i < n) : A := v i H
Definition select::explicit (A : Type) (n : N) (v : vector A n) (i : N) (H : i < n) : A := select v i H
Definition map {A B C : Type} {n : N} (f : A → B → C) (v1 : vector A n) (v2 : vector B n) : vector C n := Definition map {A B C : Type} {n : N} (f : A → B → C) (v1 : vector A n) (v2 : vector B n) : vector C n :=
λ (i : N) (H : i < n), f (v1 i H) (v2 i H) λ (i : N) (H : i < n), f (v1 i H) (v2 i H)
Definition map::explicit (A B C : Type) (n : N) (f : A → B → C) (v1 : vector A n) (v2 : vector B n) : vector C n :=
map f v1 v2
select (update (const three ⊥) two ) two two_lt_three : Bool select (update (const three ⊥) two ) two two_lt_three : Bool
if (two == two) if (two == two)
update (const three ⊥) two : vector Bool three update (const three ⊥) two : vector Bool three

View file

@ -4,6 +4,7 @@
Assumed: h Assumed: h
Proved: CongrH Proved: CongrH
Set: lean::pp::implicit Set: lean::pp::implicit
Variable h : N → N → N
Theorem CongrH {a1 a2 b1 b2 : N} (H1 : eq::explicit N a1 b1) (H2 : eq::explicit N a2 b2) : eq::explicit Theorem CongrH {a1 a2 b1 b2 : N} (H1 : eq::explicit N a1 b1) (H2 : eq::explicit N a2 b2) : eq::explicit
N N
(h a1 a2) (h a1 a2)
@ -17,10 +18,9 @@ Theorem CongrH {a1 a2 b1 b2 : N} (H1 : eq::explicit N a1 b1) (H2 : eq::explicit
b2 b2
(Congr::explicit N (λ x : N, N → N) h h a1 b1 (Refl::explicit (N → N → N) h) H1) (Congr::explicit N (λ x : N, N → N) h h a1 b1 (Refl::explicit (N → N → N) h) H1)
H2 H2
Theorem CongrH::explicit (a1 a2 b1 b2 : N) (H1 : a1 = b1) (H2 : a2 = b2) : h a1 a2 = h b1 b2 := CongrH H1 H2
Set: lean::pp::implicit Set: lean::pp::implicit
Variable h : N → N → N
Theorem CongrH {a1 a2 b1 b2 : N} (H1 : a1 = b1) (H2 : a2 = b2) : h a1 a2 = h b1 b2 := Congr (Congr (Refl h) H1) H2 Theorem CongrH {a1 a2 b1 b2 : N} (H1 : a1 = b1) (H2 : a2 = b2) : h a1 a2 = h b1 b2 := Congr (Congr (Refl h) H1) H2
Theorem CongrH::explicit (a1 a2 b1 b2 : N) (H1 : a1 = b1) (H2 : a2 = b2) : h a1 a2 = h b1 b2 := CongrH H1 H2
Proved: Example1 Proved: Example1
Set: lean::pp::implicit Set: lean::pp::implicit
Theorem Example1 (a b c d : N) Theorem Example1 (a b c d : N)