fix(library/hott): finish associativity proof
This commit is contained in:
parent
d8e2206bbc
commit
ae618c20fb
1 changed files with 11 additions and 12 deletions
|
@ -2,7 +2,7 @@
|
|||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Floris van Doorn, Jakob von Raumer
|
||||
|
||||
import .functor hott.axioms.funext
|
||||
import .functor hott.axioms.funext hott.types.pi
|
||||
open precategory path functor truncation
|
||||
|
||||
inductive natural_transformation {C D : Precategory} (F G : C ⇒ D) : Type :=
|
||||
|
@ -43,19 +43,18 @@ namespace natural_transformation
|
|||
definition eta_nat_path {η₁ η₂ : F ⟹ G} (H1 : natural_map η₁ ≈ natural_map η₂)
|
||||
(H2 : (H1 ▹ naturality η₁) ≈ naturality η₂) : η₁ ≈ η₂ :=
|
||||
rec_on η₁ (λ eta1 nat1, rec_on η₂ (λ eta2 nat2, sorry))-/
|
||||
|
||||
protected definition assoc (η₃ : H ⟹ I) (η₂ : G ⟹ H) (η₁ : F ⟹ G) [fext : funext.{l_1 l_4}] :
|
||||
protected definition assoc (η₃ : H ⟹ I) (η₂ : G ⟹ H) (η₁ : F ⟹ G) [fext : funext] :
|
||||
η₃ ∘n (η₂ ∘n η₁) ≈ (η₃ ∘n η₂) ∘n η₁ :=
|
||||
have prir [visible] : is_hset (Π {a b : C} (f : hom a b), I f ∘ (η₃ ∘n η₂) a ∘ η₁ a ≈ ((η₃ ∘n η₂) b ∘ η₁ b) ∘ F f),
|
||||
from sorry,
|
||||
path.dcongr_arg2 mk
|
||||
(funext.path_forall
|
||||
(λ (x : C), η₃ x ∘ (η₂ x ∘ η₁ x))
|
||||
(λ (x : C), (η₃ x ∘ η₂ x) ∘ η₁ x)
|
||||
(λ x, assoc (η₃ x) (η₂ x) (η₁ x))
|
||||
)
|
||||
sorry --(@is_hset.elim _ _ _ _ _ _)
|
||||
have aux4 [visible] : is_hprop (Π (a b : C) (f : hom a b), I f ∘ (η₃ ∘n η₂) a ∘ η₁ a ≈ ((η₃ ∘n η₂) b ∘ η₁ b) ∘ F f),
|
||||
begin
|
||||
apply trunc_pi, intro a,
|
||||
apply trunc_pi, intro b,
|
||||
apply trunc_pi, intro f,
|
||||
apply (@succ_is_trunc _ -1 _ (I f ∘ (η₃ ∘n η₂) a ∘ η₁ a) (((η₃ ∘n η₂) b ∘ η₁ b) ∘ F f)),
|
||||
end,
|
||||
path.dcongr_arg2 mk (funext.path_forall _ _ (λ x, !assoc)) !is_hprop.elim
|
||||
|
||||
exit
|
||||
protected definition id {C D : Precategory} {F : functor C D} : natural_transformation F F :=
|
||||
mk (λa, id) (λa b f, !id_right ⬝ (!id_left⁻¹))
|
||||
protected definition ID {C D : Precategory} (F : functor C D) : natural_transformation F F := id
|
||||
|
|
Loading…
Reference in a new issue