fix(library/type_inferer): bug in get_range method

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2013-12-21 14:55:07 -08:00
parent 90dbdaec40
commit aebff0b4d3
3 changed files with 101 additions and 11 deletions

View file

@ -43,6 +43,10 @@ class type_inferer::imp {
return ::lean::lift_free_vars(e, d, m_menv.to_some_menv()); return ::lean::lift_free_vars(e, d, m_menv.to_some_menv());
} }
expr lower_free_vars(expr const & e, unsigned s, unsigned n) {
return ::lean::lower_free_vars(e, s, n, m_menv.to_some_menv());
}
expr instantiate(expr const & e, unsigned n, expr const * s) { expr instantiate(expr const & e, unsigned n, expr const * s) {
return ::lean::instantiate(e, n, s, m_menv.to_some_menv()); return ::lean::instantiate(e, n, s, m_menv.to_some_menv());
} }
@ -70,16 +74,28 @@ class type_inferer::imp {
throw type_expected_exception(m_env, ctx, s); throw type_expected_exception(m_env, ctx, s);
} }
/**
\brief Given \c t (a Pi term), this method returns the body (aka range)
of the function space for the element e in the domain of the Pi.
*/
expr get_pi_body(expr const & t, expr const & e) {
lean_assert(is_pi(t));
if (is_arrow(t))
return lower_free_vars(abst_body(t), 1, 1);
else
return instantiate(abst_body(t), 1, &e);
}
expr get_range(expr t, expr const & e, context const & ctx) { expr get_range(expr t, expr const & e, context const & ctx) {
unsigned num = num_args(e) - 1; unsigned num = num_args(e);
while (num > 0) { for (unsigned i = 1; i < num; i++) {
--num; expr const & a = arg(e, i);
if (is_pi(t)) { if (is_pi(t)) {
t = abst_body(t); t = get_pi_body(t, a);
} else { } else {
t = normalize(t, ctx, false); t = normalize(t, ctx, false);
if (is_pi(t)) { if (is_pi(t)) {
t = abst_body(t); t = get_pi_body(t, a);
} else if (has_metavar(t) && m_menv && m_uc) { } else if (has_metavar(t) && m_menv && m_uc) {
// Create two fresh variables A and B, // Create two fresh variables A and B,
// and assign r == (Pi(x : A), B) // and assign r == (Pi(x : A), B)
@ -88,21 +104,18 @@ class type_inferer::imp {
expr p = mk_pi(g_x_name, A, B); expr p = mk_pi(g_x_name, A, B);
justification jst = mk_function_expected_justification(ctx, e); justification jst = mk_function_expected_justification(ctx, e);
m_uc->push_back(mk_eq_constraint(ctx, t, p, jst)); m_uc->push_back(mk_eq_constraint(ctx, t, p, jst));
t = abst_body(p); t = get_pi_body(p, a);
} else { } else {
t = normalize(t, ctx, true); t = normalize(t, ctx, true);
if (is_pi(t)) { if (is_pi(t)) {
t = abst_body(t); t = get_pi_body(t, a);
} else { } else {
throw function_expected_exception(m_env, ctx, e); throw function_expected_exception(m_env, ctx, e);
} }
} }
} }
} }
if (closed(t)) return t;
return t;
else
return instantiate(t, num_args(e)-1, &arg(e, 1));
} }
expr infer_type(expr const & e, context const & ctx) { expr infer_type(expr const & e, context const & ctx) {

View file

@ -0,0 +1,37 @@
SetOption pp::colors false
Definition TypeM := (Type M)
Definition TypeU := (Type U)
Variable MyCastEq {A : TypeU} {A' : TypeU} (H : A == A') (x : A) : x == cast H x
Check fun (A A': TypeM)
(a : A)
(b : A')
(L2 : A' == A),
let b' : A := cast L2 b,
L3 : b == b' := MyCastEq L2 b
in L3
Check fun (A A': TypeM)
(B : A -> TypeM)
(B' : A' -> TypeM)
(f : Pi x : A, B x)
(g : Pi x : A', B' x)
(a : A)
(b : A')
(H1 : (Pi x : A, B x) == (Pi x : A', B' x))
(H2 : f == g)
(H3 : a == b),
let L1 : A == A' := DomInj H1,
L2 : A' == A := Symm L1,
b' : A := cast L2 b,
L3 : b == b' := MyCastEq L2 b,
L4 : a == b' := TransExt H3 L3,
L5 : f a == f b' := Congr2 f L4,
S1 : (Pi x : A', B' x) == (Pi x : A, B x) := Symm H1,
g' : (Pi x : A, B x) := cast S1 g,
L6 : g == g' := MyCastEq S1 g,
L7 : f == g' := TransExt H2 L6,
L8 : f b' == g' b' := Congr1 b' L7,
L9 : f a == g' b' := TransExt L5 L8
in L9

View file

@ -0,0 +1,40 @@
Set: pp::colors
Set: pp::unicode
Set: pp::colors
Defined: TypeM
Defined: TypeU
Assumed: MyCastEq
λ (A A' : TypeM) (a : A) (b : A') (L2 : A' == A), let b' : A := cast L2 b, L3 : b == b' := MyCastEq L2 b in L3 :
Π (A A' : TypeM) (a : A) (b : A') (L2 : A' == A), b == cast L2 b
λ (A A' : TypeM)
(B : A → TypeM)
(B' : A' → TypeM)
(f : Π x : A, B x)
(g : Π x : A', B' x)
(a : A)
(b : A')
(H1 : (Π x : A, B x) == (Π x : A', B' x))
(H2 : f == g)
(H3 : a == b),
let L1 : A == A' := DomInj H1,
L2 : A' == A := Symm L1,
b' : A := cast L2 b,
L3 : b == b' := MyCastEq L2 b,
L4 : a == b' := TransExt H3 L3,
L5 : f a == f b' := Congr2 f L4,
S1 : (Π x : A', B' x) == (Π x : A, B x) := Symm H1,
g' : Π x : A, B x := cast S1 g,
L6 : g == g' := MyCastEq S1 g,
L7 : f == g' := TransExt H2 L6,
L8 : f b' == g' b' := Congr1 b' L7,
L9 : f a == g' b' := TransExt L5 L8
in L9 :
Π (A A' : TypeM)
(B : A → TypeM)
(B' : A' → TypeM)
(f : Π x : A, B x)
(g : Π x : A', B' x)
(a : A)
(b : A')
(H1 : (Π x : A, B x) == (Π x : A', B' x)),
f == g → a == b → f a == Cast (Π x : A', B' x) (Π x : A, B x) (Symm H1) g (Cast A' A (Symm (DomInj H1)) b)