feat(library/standard): define heq, and configure 'calc' for '='

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-06-30 14:35:33 -07:00
parent e3f9b21c30
commit af230e73c6

View file

@ -70,6 +70,10 @@ theorem subst {A : Type} {a b : A} {P : A → Bool} (H1 : a = b) (H2 : P a) : P
theorem trans {A : Type} {a b c : A} (H1 : a = b) (H2 : b = c) : a = c theorem trans {A : Type} {a b c : A} (H1 : a = b) (H2 : b = c) : a = c
:= subst H2 H1 := subst H2 H1
calc_subst subst
calc_refl refl
calc_trans trans
theorem symm {A : Type} {a b : A} (H : a = b) : b = a theorem symm {A : Type} {a b : A} (H : a = b) : b = a
:= subst H (refl a) := subst H (refl a)
@ -82,12 +86,6 @@ theorem congr2 {A B : Type} {a b : A} (f : A → B) (H : a = b) : f a = f b
theorem equal_f {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) : ∀ x, f x = g x theorem equal_f {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) : ∀ x, f x = g x
:= take x, congr1 H x := take x, congr1 H x
definition cast {A B : Type} (H : A = B) (a : A) : B
:= eq_rec a H
theorem cast_refl {A : Type} (a : A) : cast (refl A) a = a
:= refl (cast (refl A) a)
definition iff (a b : Bool) := (a → b) ∧ (b → a) definition iff (a b : Bool) := (a → b) ∧ (b → a)
infix `↔` 50 := iff infix `↔` 50 := iff
@ -130,3 +128,31 @@ theorem inhabited_Bool : inhabited Bool
theorem inhabited_fun (A : Type) {B : Type} (H : inhabited B) : inhabited (A → B) theorem inhabited_fun (A : Type) {B : Type} (H : inhabited B) : inhabited (A → B)
:= inhabited_elim H (take (b : B), inhabited_intro (λ a : A, b)) := inhabited_elim H (take (b : B), inhabited_intro (λ a : A, b))
definition cast {A B : Type} (H : A = B) (a : A) : B
:= eq_rec a H
theorem cast_refl {A : Type} (a : A) : cast (refl A) a = a
:= refl (cast (refl A) a)
theorem cast_eq {A : Type} (H : A = A) (a : A) : cast H a = a
:= calc cast H a = cast (refl A) a : refl (cast H a) -- by proof irrelevance
... = a : cast_refl a
definition heq {A B : Type} (a : A) (b : B) := ∃ H, cast H a = b
infixl `==` 50 := heq
theorem heq_type_eq {A B : Type} {a : A} {b : B} (H : a == b) : A = B
:= exists_elim H (λ H Hw, H)
theorem eq_to_heq {A : Type} {a b : A} (H : a = b) : a == b
:= exists_intro (refl A) (trans (cast_refl a) H)
theorem heq_to_eq {A : Type} {a b : A} (H : a == b) : a = b
:= exists_elim H (λ (H : A = A) (Hw : cast H a = b),
calc a = cast H a : symm (cast_eq H a)
... = b : Hw)
theorem heq_refl {A : Type} (a : A) : a == a
:= eq_to_heq (refl a)