fix(library/data/nat,int): fix instance declarations for nat and int
This commit is contained in:
parent
bdfa919098
commit
b11064a90e
3 changed files with 22 additions and 30 deletions
|
@ -597,22 +597,18 @@ or_of_or_of_imp_of_imp H3
|
||||||
(assume H : (nat_abs a) = nat.zero, nat_abs_eq_zero H)
|
(assume H : (nat_abs a) = nat.zero, nat_abs_eq_zero H)
|
||||||
(assume H : (nat_abs b) = nat.zero, nat_abs_eq_zero H)
|
(assume H : (nat_abs b) = nat.zero, nat_abs_eq_zero H)
|
||||||
|
|
||||||
protected definition integral_domain : algebra.integral_domain int :=
|
section
|
||||||
algebra.integral_domain.mk add add.assoc zero zero_add add_zero neg add.left_inv
|
open [classes] algebra
|
||||||
add.comm mul mul.assoc (of_num 1) one_mul mul_one mul.left_distrib mul.right_distrib
|
|
||||||
zero_ne_one mul.comm @eq_zero_or_eq_zero_of_mul_eq_zero
|
|
||||||
|
|
||||||
--namespace algebra
|
protected definition integral_domain [instance] : algebra.integral_domain int :=
|
||||||
-- open algebra -- TODO: why do we have to do this?
|
algebra.integral_domain.mk add add.assoc zero zero_add add_zero neg add.left_inv
|
||||||
-- instance [persistent] int.integral_domain
|
add.comm mul mul.assoc (of_num 1) one_mul mul_one mul.left_distrib mul.right_distrib
|
||||||
--end algebra
|
zero_ne_one mul.comm @eq_zero_or_eq_zero_of_mul_eq_zero
|
||||||
|
end
|
||||||
|
|
||||||
/- instantiate ring theorems to int -/
|
/- instantiate ring theorems to int -/
|
||||||
|
|
||||||
section port_algebra
|
section port_algebra
|
||||||
open algebra
|
|
||||||
instance int.integral_domain -- TODO: why didn't the setting above persist?
|
|
||||||
|
|
||||||
theorem mul.left_comm : ∀a b c : ℤ, a * (b * c) = b * (a * c) := algebra.mul.left_comm
|
theorem mul.left_comm : ∀a b c : ℤ, a * (b * c) = b * (a * c) := algebra.mul.left_comm
|
||||||
theorem mul.right_comm : ∀a b c : ℤ, (a * b) * c = (a * c) * b := algebra.mul.right_comm
|
theorem mul.right_comm : ∀a b c : ℤ, (a * b) * c = (a * c) * b := algebra.mul.right_comm
|
||||||
theorem add.left_comm : ∀a b c : ℤ, a + (b + c) = b + (a + c) := algebra.add.left_comm
|
theorem add.left_comm : ∀a b c : ℤ, a + (b + c) = b + (a + c) := algebra.add.left_comm
|
||||||
|
|
|
@ -211,23 +211,19 @@ lt.intro
|
||||||
... = of_nat (succ (succ n * m + n)) : nat.add_succ
|
... = of_nat (succ (succ n * m + n)) : nat.add_succ
|
||||||
... = 0 + succ (succ n * m + n) : zero_add))
|
... = 0 + succ (succ n * m + n) : zero_add))
|
||||||
|
|
||||||
protected definition linear_ordered_comm_ring : algebra.linear_ordered_comm_ring int :=
|
section
|
||||||
algebra.linear_ordered_comm_ring.mk add add.assoc zero zero_add add_zero neg add.left_inv
|
open [classes] algebra
|
||||||
|
|
||||||
|
protected definition linear_ordered_comm_ring [instance] : algebra.linear_ordered_comm_ring int :=
|
||||||
|
algebra.linear_ordered_comm_ring.mk add add.assoc zero zero_add add_zero neg add.left_inv
|
||||||
add.comm mul mul.assoc (of_num 1) one_mul mul_one mul.left_distrib mul.right_distrib
|
add.comm mul mul.assoc (of_num 1) one_mul mul_one mul.left_distrib mul.right_distrib
|
||||||
zero_ne_one le le.refl @le.trans @le.antisymm lt lt_iff_le_and_ne @add_le_add_left
|
zero_ne_one le le.refl @le.trans @le.antisymm lt lt_iff_le_and_ne @add_le_add_left
|
||||||
@mul_nonneg @mul_pos le_iff_lt_or_eq le.total mul.comm
|
@mul_nonneg @mul_pos le_iff_lt_or_eq le.total mul.comm
|
||||||
|
end
|
||||||
|
|
||||||
/- instantiate ordered ring theorems to int -/
|
/- instantiate ordered ring theorems to int -/
|
||||||
|
|
||||||
namespace algebra
|
|
||||||
open algebra
|
|
||||||
instance [persistent] int.linear_ordered_comm_ring
|
|
||||||
end algebra
|
|
||||||
|
|
||||||
section port_algebra
|
section port_algebra
|
||||||
open algebra
|
|
||||||
instance int.linear_ordered_comm_ring
|
|
||||||
|
|
||||||
definition ge (a b : ℤ) := algebra.has_le.ge a b
|
definition ge (a b : ℤ) := algebra.has_le.ge a b
|
||||||
definition gt (a b : ℤ) := algebra.has_lt.gt a b
|
definition gt (a b : ℤ) := algebra.has_lt.gt a b
|
||||||
infix >= := int.ge
|
infix >= := int.ge
|
||||||
|
@ -452,8 +448,8 @@ section port_algebra
|
||||||
@algebra.mul_pos_of_neg_of_neg _ _
|
@algebra.mul_pos_of_neg_of_neg _ _
|
||||||
|
|
||||||
theorem mul_self_nonneg : ∀a : ℤ, a * a ≥ 0 := algebra.mul_self_nonneg
|
theorem mul_self_nonneg : ∀a : ℤ, a * a ≥ 0 := algebra.mul_self_nonneg
|
||||||
theorem zero_le_one : #int 0 ≤ 1 := @algebra.zero_le_one int int.linear_ordered_comm_ring
|
theorem zero_le_one : #int 0 ≤ 1 := trivial
|
||||||
theorem zero_lt_one : #int 0 < 1 := @algebra.zero_lt_one int int.linear_ordered_comm_ring
|
theorem zero_lt_one : #int 0 < 1 := trivial
|
||||||
theorem pos_and_pos_or_neg_and_neg_of_mul_pos : ∀{a b : ℤ}, a * b > 0 →
|
theorem pos_and_pos_or_neg_and_neg_of_mul_pos : ∀{a b : ℤ}, a * b > 0 →
|
||||||
(a > 0 ∧ b > 0) ∨ (a < 0 ∧ b < 0) := @algebra.pos_and_pos_or_neg_and_neg_of_mul_pos _ _
|
(a > 0 ∧ b > 0) ∨ (a < 0 ∧ b < 0) := @algebra.pos_and_pos_or_neg_and_neg_of_mul_pos _ _
|
||||||
end port_algebra
|
end port_algebra
|
||||||
|
|
|
@ -289,15 +289,16 @@ cases_on n
|
||||||
... = succ (succ n' * m' + n') : add_succ)⁻¹)
|
... = succ (succ n' * m' + n') : add_succ)⁻¹)
|
||||||
!succ_ne_zero))
|
!succ_ne_zero))
|
||||||
|
|
||||||
section port_algebra
|
section
|
||||||
|
open [classes] algebra
|
||||||
open algebra
|
|
||||||
|
|
||||||
protected definition comm_semiring [instance] : algebra.comm_semiring nat :=
|
protected definition comm_semiring [instance] : algebra.comm_semiring nat :=
|
||||||
algebra.comm_semiring.mk add add.assoc zero zero_add add_zero add.comm
|
algebra.comm_semiring.mk add add.assoc zero zero_add add_zero add.comm
|
||||||
mul mul.assoc (succ zero) one_mul mul_one mul.left_distrib mul.right_distrib
|
mul mul.assoc (succ zero) one_mul mul_one mul.left_distrib mul.right_distrib
|
||||||
zero_mul mul_zero (ne.symm (succ_ne_zero zero)) mul.comm
|
zero_mul mul_zero (ne.symm (succ_ne_zero zero)) mul.comm
|
||||||
|
end
|
||||||
|
|
||||||
|
section port_algebra
|
||||||
theorem mul.left_comm : ∀a b c : ℕ, a * (b * c) = b * (a * c) := algebra.mul.left_comm
|
theorem mul.left_comm : ∀a b c : ℕ, a * (b * c) = b * (a * c) := algebra.mul.left_comm
|
||||||
theorem mul.right_comm : ∀a b c : ℕ, (a * b) * c = (a * c) * b := algebra.mul.right_comm
|
theorem mul.right_comm : ∀a b c : ℕ, (a * b) * c = (a * c) * b := algebra.mul.right_comm
|
||||||
|
|
||||||
|
@ -325,7 +326,6 @@ section port_algebra
|
||||||
theorem dvd_of_mul_left_dvd : ∀{a b c : ℕ}, a * b | c → b | c :=
|
theorem dvd_of_mul_left_dvd : ∀{a b c : ℕ}, a * b | c → b | c :=
|
||||||
@algebra.dvd_of_mul_left_dvd _ _
|
@algebra.dvd_of_mul_left_dvd _ _
|
||||||
theorem dvd_add : ∀{a b c : ℕ}, a | b → a | c → a | b + c := @algebra.dvd_add _ _
|
theorem dvd_add : ∀{a b c : ℕ}, a | b → a | c → a | b + c := @algebra.dvd_add _ _
|
||||||
|
|
||||||
end port_algebra
|
end port_algebra
|
||||||
|
|
||||||
end nat
|
end nat
|
||||||
|
|
Loading…
Reference in a new issue