feat(library/logic): add well-founded recursion
It also removes the old well-founded induction theorem based on classical principles
This commit is contained in:
parent
4fa363adbf
commit
b177c84b06
2 changed files with 63 additions and 35 deletions
|
@ -1,35 +0,0 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
import logic.identities logic.decidable
|
||||
import logic.axioms.classical logic.axioms.prop_decidable
|
||||
|
||||
open decidable
|
||||
|
||||
-- Well-founded relation definition
|
||||
-- We are essentially saying that a relation R is well-founded
|
||||
-- if every non-empty "set" P, has a R-minimal element
|
||||
definition wf {A : Type} (R : A → A → Prop) : Prop :=
|
||||
∀P, (∃w, P w) → ∃min, P min ∧ ∀b, R b min → ¬P b
|
||||
|
||||
-- Well-founded induction theorem
|
||||
theorem wf_induction {A : Type} {R : A → A → Prop} {P : A → Prop} (Hwf : wf R) (iH : ∀x, (∀y, R y x → P y) → P x)
|
||||
: ∀x, P x :=
|
||||
by_contradiction (assume N : ¬∀x, P x,
|
||||
-- TODO: when type classes can handle quantifiers, we will not need to give the implicit
|
||||
-- arguments to not_forall_exists
|
||||
obtain (w : A) (Hw : ¬P w), from @not_forall_exists _ _ (take x, _) _ N,
|
||||
-- The main "trick" is to define Q x as ¬P x.
|
||||
-- Since R is well-founded, there must be a R-minimal element r s.t. Q r (which is ¬P r)
|
||||
let Q x := ¬P x in
|
||||
have Qw : ∃w, Q w, from exists_intro w Hw,
|
||||
have Qwf : ∃min, Q min ∧ ∀b, R b min → ¬Q b, from Hwf Q Qw,
|
||||
obtain (r : A) (Hr : Q r ∧ ∀b, R b r → ¬Q b), from Qwf,
|
||||
-- Using the inductive hypothesis iH and Hr, we show P r, and derive the contradiction.
|
||||
have s1 : ∀b, R b r → P b, from
|
||||
take b : A, assume H : R b r,
|
||||
-- We are using Hr to derive ¬¬P b
|
||||
not_not_elim (and.elim_right Hr b H),
|
||||
have s2 : P r, from iH r s1,
|
||||
have s3 : ¬P r, from and.elim_left Hr,
|
||||
absurd s2 s3)
|
63
library/logic/wf.lean
Normal file
63
library/logic/wf.lean
Normal file
|
@ -0,0 +1,63 @@
|
|||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||||
-- Author: Leonardo de Moura
|
||||
import logic
|
||||
|
||||
inductive acc {A : Type} (R : A → A → Prop) : A → Prop :=
|
||||
intro : ∀x, (∀ y, R y x → acc R y) → acc R x
|
||||
|
||||
definition well_founded {A : Type} (R : A → A → Prop) :=
|
||||
∀a, acc R a
|
||||
|
||||
namespace well_founded
|
||||
|
||||
context
|
||||
parameters {A : Type} {R : A → A → Prop}
|
||||
infix `≺`:50 := R
|
||||
|
||||
definition acc_inv {x y : A} (H₁ : acc R x) (H₂ : y ≺ x) : acc R y :=
|
||||
have gen : y ≺ x → acc R y, from
|
||||
acc.rec_on H₁ (λ x₁ ac₁ iH H₂, ac₁ y H₂),
|
||||
gen H₂
|
||||
|
||||
hypothesis Hwf : well_founded R
|
||||
|
||||
theorem well_founded_rec {C : A → Type} (a : A) (H : Πx, (Πy, y ≺ x → C y) → C x) : C a :=
|
||||
acc.rec_on (Hwf a) (λ x₁ ac₁ iH, H x₁ iH)
|
||||
|
||||
theorem well_founded_ind {C : A → Prop} (a : A) (H : ∀x, (∀y, y ≺ x → C y) → C x) : C a :=
|
||||
well_founded_rec a H
|
||||
|
||||
variable {C : A → Type}
|
||||
variable F : Πx, (Πy, y ≺ x → C y) → C x
|
||||
|
||||
definition fix_F (x : A) (a : acc R x) : C x :=
|
||||
acc.rec_on a (λ x₁ ac₁ iH, F x₁ iH)
|
||||
|
||||
theorem fix_F_eq (x : A) (r : acc R x) :
|
||||
fix_F F x r = F x (λ (y : A) (p : y ≺ x), fix_F F y (acc_inv r p)) :=
|
||||
have gen : Π r : acc R x, fix_F F x r = F x (λ (y : A) (p : y ≺ x), fix_F F y (acc_inv r p)), from
|
||||
acc.rec_on r
|
||||
(λ x₁ ac iH (r₁ : acc R x₁),
|
||||
-- The proof is straightforward after we replace r₁ with acc.intro (to "unblock" evaluation).
|
||||
calc fix_F F x₁ r₁
|
||||
= fix_F F x₁ (acc.intro x₁ ac) : proof_irrel r₁
|
||||
... = F x₁ (λ y ay, fix_F F y (acc_inv r₁ ay)) : rfl),
|
||||
gen r
|
||||
end
|
||||
|
||||
variables {A : Type} {C : A → Type} {R : A → A → Prop}
|
||||
-- Well-founded fixpoint
|
||||
definition fix (Hwf : well_founded R) (F : Πx, (Πy, R y x → C y) → C x) (x : A) : C x :=
|
||||
fix_F F x (Hwf x)
|
||||
|
||||
-- Well-founded fixpoint satisfies fixpoint equation
|
||||
theorem fix_eq (Hwf : well_founded R) (F : Πx, (Πy, R y x → C y) → C x) (x : A) :
|
||||
fix Hwf F x = F x (λy h, fix Hwf F y) :=
|
||||
calc
|
||||
-- The proof is straightforward, it just uses fix_F_eq and proof irrelevance
|
||||
fix Hwf F x
|
||||
= F x (λy h, fix_F F y (acc_inv (Hwf x) h)) : fix_F_eq F x (Hwf x)
|
||||
... = F x (λy h, fix Hwf F y) : rfl -- proof irrelevance is used here
|
||||
|
||||
end well_founded
|
Loading…
Reference in a new issue