diff --git a/library/data/set/basic.lean b/library/data/set/basic.lean index 525c34f44..3b962d5c2 100644 --- a/library/data/set/basic.lean +++ b/library/data/set/basic.lean @@ -3,7 +3,7 @@ Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad, Leonardo de Moura -/ -import logic.connectives algebra.binary +import logic.connectives logic.identities algebra.binary open eq.ops binary definition set [reducible] (X : Type) := X → Prop @@ -32,6 +32,9 @@ take x, assume ax, subbc (subab ax) theorem subset.antisymm {a b : set X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b := setext (λ x, iff.intro (λ ina, h₁ ina) (λ inb, h₂ inb)) +theorem mem_of_subset_of_mem {s₁ s₂ : set X} {a : X} : s₁ ⊆ s₂ → a ∈ s₁ → a ∈ s₂ := +assume h₁ h₂, h₁ _ h₂ + -- an alterantive name theorem eq_of_subset_of_subset {a b : set X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b := subset.antisymm h₁ h₂ @@ -97,6 +100,12 @@ theorem mem_union (x : X) (a b : set X) : x ∈ a ∪ b ↔ x ∈ a ∨ x ∈ b theorem mem_union_eq (x : X) (a b : set X) : x ∈ a ∪ b = (x ∈ a ∨ x ∈ b) := rfl +theorem mem_union_of_mem_left {x : X} {a : set X} (b : set X) : x ∈ a → x ∈ a ∪ b := +assume h, or.inl h + +theorem mem_union_of_mem_right {x : X} {b : set X} (a : set X) : x ∈ b → x ∈ a ∪ b := +assume h, or.inr h + theorem union_self (a : set X) : a ∪ a = a := setext (take x, !or_self) @@ -188,6 +197,34 @@ notation `'{`:max a:(foldr `,` (x b, insert x b) ∅) `}`:0 := a theorem subset_insert (x : X) (a : set X) : a ⊆ insert x a := take y, assume ys, or.inr ys +theorem mem_insert (x : X) (s : set X) : x ∈ insert x s := +or.inl rfl + +theorem mem_insert_of_mem {x : X} {s : set X} (y : X) : x ∈ s → x ∈ insert y s := +assume h, or.inr h + +theorem eq_or_mem_of_mem_insert {x a : X} {s : set X} : x ∈ insert a s → x = a ∨ x ∈ s := +assume h, h + +theorem mem_of_mem_insert_of_ne {x a : X} {s : set X} (xin : x ∈ insert a s) : x ≠ a → x ∈ s := +or_resolve_right (eq_or_mem_of_mem_insert xin) + +theorem mem_insert_eq (x a : X) (s : set X) : x ∈ insert a s = (x = a ∨ x ∈ s) := +propext (iff.intro !eq_or_mem_of_mem_insert + (or.rec (λH', (eq.substr H' !mem_insert)) !mem_insert_of_mem)) + +theorem insert_eq_of_mem {a : X} {s : set X} (H : a ∈ s) : insert a s = s := +setext (λ x, eq.substr (mem_insert_eq x a s) + (or_iff_right_of_imp (λH1, eq.substr H1 H))) + +theorem insert.comm (x y : X) (s : set X) : insert x (insert y s) = insert y (insert x s) := +setext (take a, by rewrite [*mem_insert_eq, propext !or.left_comm]) + +theorem eq_of_mem_singleton {x y : X} : x ∈ insert y ∅ → x = y := +assume h, or.elim (eq_or_mem_of_mem_insert h) + (suppose x = y, this) + (suppose x ∈ ∅, absurd this !not_mem_empty) + /- separation -/ theorem eq_sep_of_subset {s t : set X} (ssubt : s ⊆ t) : s = {x ∈ t | x ∈ s} :=