feat(library/tactic): add 'transitiviy', 'reflexivity' and 'symmetry' tactics

closes #500
This commit is contained in:
Leonardo de Moura 2015-05-02 15:48:25 -07:00
parent cd17618f4a
commit b39fe17dee
8 changed files with 153 additions and 2 deletions

View file

@ -112,6 +112,10 @@ opaque definition injection (e : expr) (ids : opt_identifier_list) : tactic := b
opaque definition subst (ids : identifier_list) : tactic := builtin opaque definition subst (ids : identifier_list) : tactic := builtin
opaque definition reflexivity : tactic := builtin
opaque definition symmetry : tactic := builtin
opaque definition transitivity (e : expr) : tactic := builtin
definition try (t : tactic) : tactic := or_else t id definition try (t : tactic) : tactic := or_else t id
definition repeat1 (t : tactic) : tactic := and_then t (repeat t) definition repeat1 (t : tactic) : tactic := and_then t (repeat t)
definition focus (t : tactic) : tactic := focus_at t 0 definition focus (t : tactic) : tactic := focus_at t 0

View file

@ -112,6 +112,10 @@ opaque definition injection (e : expr) (ids : opt_identifier_list) : tactic := b
opaque definition subst (ids : identifier_list) : tactic := builtin opaque definition subst (ids : identifier_list) : tactic := builtin
opaque definition reflexivity : tactic := builtin
opaque definition symmetry : tactic := builtin
opaque definition transitivity (e : expr) : tactic := builtin
definition try (t : tactic) : tactic := or_else t id definition try (t : tactic) : tactic := or_else t id
definition repeat1 (t : tactic) : tactic := and_then t (repeat t) definition repeat1 (t : tactic) : tactic := and_then t (repeat t)
definition focus (t : tactic) : tactic := focus_at t 0 definition focus (t : tactic) : tactic := focus_at t 0

View file

@ -136,7 +136,7 @@
"generalize" "generalizes" "clear" "clears" "revert" "reverts" "back" "beta" "done" "exact" "rexact" "generalize" "generalizes" "clear" "clears" "revert" "reverts" "back" "beta" "done" "exact" "rexact"
"refine" "repeat" "whnf" "rotate" "rotate_left" "rotate_right" "inversion" "cases" "rewrite" "esimp" "refine" "repeat" "whnf" "rotate" "rotate_left" "rotate_right" "inversion" "cases" "rewrite" "esimp"
"unfold" "change" "check_expr" "contradiction" "exfalso" "split" "existsi" "constructor" "left" "right" "unfold" "change" "check_expr" "contradiction" "exfalso" "split" "existsi" "constructor" "left" "right"
"injection" "congruence")) "injection" "congruence" "reflexivity" "symmetry" "transitivity"))
word-end) word-end)
(1 'font-lock-constant-face)) (1 'font-lock-constant-face))
;; Types ;; Types

View file

@ -6,6 +6,6 @@ assert_tactic.cpp clear_tactic.cpp expr_to_tactic.cpp location.cpp
rewrite_tactic.cpp util.cpp class_instance_synth.cpp init_module.cpp rewrite_tactic.cpp util.cpp class_instance_synth.cpp init_module.cpp
change_tactic.cpp check_expr_tactic.cpp let_tactic.cpp contradiction_tactic.cpp change_tactic.cpp check_expr_tactic.cpp let_tactic.cpp contradiction_tactic.cpp
exfalso_tactic.cpp constructor_tactic.cpp injection_tactic.cpp exfalso_tactic.cpp constructor_tactic.cpp injection_tactic.cpp
congruence_tactic.cpp) congruence_tactic.cpp equivalence_tactics.cpp)
target_link_libraries(tactic ${LEAN_LIBS}) target_link_libraries(tactic ${LEAN_LIBS})

View file

@ -0,0 +1,95 @@
/*
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#include "library/equivalence_manager.h"
#include "library/explicit.h"
#include "library/placeholder.h"
#include "library/tactic/apply_tactic.h"
#include "library/tactic/expr_to_tactic.h"
namespace lean {
static optional<name> get_goal_op(proof_state const & s) {
goals const & gs = s.get_goals();
if (empty(gs)) {
throw_no_goal_if_enabled(s);
return optional<name>();
}
goal const & g = head(gs);
expr const & op = get_app_fn(g.get_type());
if (is_constant(op))
return optional<name>(const_name(op));
else
return optional<name>();
}
tactic refl_tactic(elaborate_fn const & elab) {
auto fn = [=](environment const & env, io_state const & ios, proof_state const & s) {
auto op = get_goal_op(s);
if (!op)
return proof_state_seq();
if (auto refl = get_refl_info(env, *op)) {
return apply_tactic(elab, mk_constant(*refl))(env, ios, s);
} else {
throw_tactic_exception_if_enabled(s, sstream() << "invalid 'reflexivity' tactic, operator '" << *op << "' is not marked are reflexive");
return proof_state_seq();
}
};
return tactic(fn);
}
tactic symm_tactic(elaborate_fn const & elab) {
auto fn = [=](environment const & env, io_state const & ios, proof_state const & s) {
auto op = get_goal_op(s);
if (!op)
return proof_state_seq();
if (auto symm = get_symm_info(env, *op)) {
return apply_tactic(elab, mk_constant(*symm))(env, ios, s);
} else {
throw_tactic_exception_if_enabled(s, sstream() << "invalid 'symmetry' tactic, operator '" << *op << "' is not marked are symmetric");
return proof_state_seq();
}
};
return tactic(fn);
}
tactic trans_tactic(elaborate_fn const & elab, expr const & e) {
auto fn = [=](environment const & env, io_state const & ios, proof_state const & s) {
auto op = get_goal_op(s);
if (!op)
return proof_state_seq();
if (auto info = get_trans_extra_info(env, *op, *op)) {
expr pr = mk_explicit(mk_constant(std::get<0>(*info)));
unsigned nparams = std::get<2>(*info);
lean_assert(nparams >= 5);
for (unsigned i = 0; i < nparams - 4; i++)
pr = mk_app(pr, mk_expr_placeholder());
pr = mk_app(pr, e);
return apply_tactic(elab, pr)(env, ios, s);
} else {
throw_tactic_exception_if_enabled(s, sstream() << "invalid 'transitivity' tactic, operator '" << *op << "' is not marked are transitive");
return proof_state_seq();
}
};
return tactic(fn);
}
void initialize_equivalence_tactics() {
register_tac(name{"tactic", "reflexivity"},
[](type_checker &, elaborate_fn const & fn, expr const &, pos_info_provider const *) {
return refl_tactic(fn);
});
register_tac(name{"tactic", "symmetry"},
[](type_checker &, elaborate_fn const & fn, expr const &, pos_info_provider const *) {
return symm_tactic(fn);
});
register_tac(name{"tactic", "transitivity"},
[](type_checker &, elaborate_fn const & fn, expr const & e, pos_info_provider const *) {
check_tactic_expr(app_arg(e), "invalid 'transitivity' tactic, invalid argument");
return trans_tactic(fn, get_tactic_expr_expr(app_arg(e)));
});
}
void finalize_equivalence_tactics() {}
}

View file

@ -0,0 +1,11 @@
/*
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#pragma once
namespace lean {
void initialize_equivalence_tactics();
void finalize_equivalence_tactics();
}

View file

@ -28,6 +28,7 @@ Author: Leonardo de Moura
#include "library/tactic/constructor_tactic.h" #include "library/tactic/constructor_tactic.h"
#include "library/tactic/injection_tactic.h" #include "library/tactic/injection_tactic.h"
#include "library/tactic/congruence_tactic.h" #include "library/tactic/congruence_tactic.h"
#include "library/tactic/equivalence_tactics.h"
namespace lean { namespace lean {
void initialize_tactic_module() { void initialize_tactic_module() {
@ -55,9 +56,11 @@ void initialize_tactic_module() {
initialize_constructor_tactic(); initialize_constructor_tactic();
initialize_injection_tactic(); initialize_injection_tactic();
initialize_congruence_tactic(); initialize_congruence_tactic();
initialize_equivalence_tactics();
} }
void finalize_tactic_module() { void finalize_tactic_module() {
finalize_equivalence_tactics();
finalize_congruence_tactic(); finalize_congruence_tactic();
finalize_injection_tactic(); finalize_injection_tactic();
finalize_constructor_tactic(); finalize_constructor_tactic();

View file

@ -0,0 +1,34 @@
open nat
example (a : nat) : a + 0 = a :=
by reflexivity
example (a : Prop) : a ↔ a :=
by reflexivity
example (a b : Prop) : (a ↔ b) → (b ↔ a) :=
by intros; symmetry; assumption
example (a b c : nat) : a = b → b = c → c = a :=
begin
intros,
symmetry,
transitivity b,
assumption
end
example (a b c : Prop) : (a ↔ b) → (b ↔ c) → (c ↔ a) :=
begin
intros,
symmetry,
transitivity b,
assumption
end
example {A B C : Type} (a : A) (b : B) (c : C) : a == b → b == c → c == a :=
begin
intros,
symmetry,
transitivity b,
assumption
end