fix(library/nat/div): remove unnecessary '_''s
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
8094884c85
commit
b43313ec43
1 changed files with 8 additions and 8 deletions
|
@ -73,8 +73,8 @@ let f := rec_measure default measure rec_val in
|
||||||
case_strong_induction_on m
|
case_strong_induction_on m
|
||||||
(take x,
|
(take x,
|
||||||
have H1 : f' 0 x = default, from rfl,
|
have H1 : f' 0 x = default, from rfl,
|
||||||
have H2 [fact]: ¬ measure x < 0, from not_lt_zero _,
|
have H2 [fact]: ¬ measure x < 0, from not_lt_zero,
|
||||||
have H3 : restrict default measure f 0 x = default, from if_neg H2 _ _,
|
have H3 : restrict default measure f 0 x = default, from if_neg H2,
|
||||||
show f' 0 x = restrict default measure f 0 x, from trans H1 (symm H3))
|
show f' 0 x = restrict default measure f 0 x, from trans H1 (symm H3))
|
||||||
(take m,
|
(take m,
|
||||||
assume IH: ∀n, n ≤ m → ∀x, f' n x = restrict default measure f n x,
|
assume IH: ∀n, n ≤ m → ∀x, f' n x = restrict default measure f n x,
|
||||||
|
@ -86,12 +86,12 @@ case_strong_induction_on m
|
||||||
take z,
|
take z,
|
||||||
assume Hzx : measure z < measure x,
|
assume Hzx : measure z < measure x,
|
||||||
calc
|
calc
|
||||||
f' m z = restrict default measure f m z : IH m (le_refl m) z
|
f' m z = restrict default measure f m z : IH m le_refl z
|
||||||
... = f z : restrict_lt_eq _ _ _ _ _ (lt_le_trans Hzx (lt_succ_imp_le H1)),
|
... = f z : restrict_lt_eq _ _ _ _ _ (lt_le_trans Hzx (lt_succ_imp_le H1)),
|
||||||
have H2 [fact] : f' (succ m) x = rec_val x f, from
|
have H2 [fact] : f' (succ m) x = rec_val x f, from
|
||||||
calc
|
calc
|
||||||
f' (succ m) x = if measure x < succ m then rec_val x (f' m) else default : rfl
|
f' (succ m) x = if measure x < succ m then rec_val x (f' m) else default : rfl
|
||||||
... = rec_val x (f' m) : if_pos H1 _ _
|
... = rec_val x (f' m) : if_pos H1
|
||||||
... = rec_val x f : rec_decreasing (f' m) f x H2a,
|
... = rec_val x f : rec_decreasing (f' m) f x H2a,
|
||||||
let m' := measure x in
|
let m' := measure x in
|
||||||
have H3a : ∀z, measure z < m' → f' m' z = f z, from
|
have H3a : ∀z, measure z < m' → f' m' z = f z, from
|
||||||
|
@ -102,10 +102,10 @@ case_strong_induction_on m
|
||||||
... = f z : restrict_lt_eq _ _ _ _ _ Hzx,
|
... = f z : restrict_lt_eq _ _ _ _ _ Hzx,
|
||||||
have H3 : restrict default measure f (succ m) x = rec_val x f, from
|
have H3 : restrict default measure f (succ m) x = rec_val x f, from
|
||||||
calc
|
calc
|
||||||
restrict default measure f (succ m) x = f x : if_pos H1 _ _
|
restrict default measure f (succ m) x = f x : if_pos H1
|
||||||
... = f' (succ m') x : refl _
|
... = f' (succ m') x : refl _
|
||||||
... = if measure x < succ m' then rec_val x (f' m') else default : rfl
|
... = if measure x < succ m' then rec_val x (f' m') else default : rfl
|
||||||
... = rec_val x (f' m') : if_pos (self_lt_succ _) _ _
|
... = rec_val x (f' m') : if_pos self_lt_succ
|
||||||
... = rec_val x f : rec_decreasing _ _ _ H3a,
|
... = rec_val x f : rec_decreasing _ _ _ H3a,
|
||||||
show f' (succ m) x = restrict default measure f (succ m) x,
|
show f' (succ m) x = restrict default measure f (succ m) x,
|
||||||
from trans H2 (symm H3))
|
from trans H2 (symm H3))
|
||||||
|
@ -113,9 +113,9 @@ case_strong_induction_on m
|
||||||
have H2 : f' (succ m) x = default, from
|
have H2 : f' (succ m) x = default, from
|
||||||
calc
|
calc
|
||||||
f' (succ m) x = if measure x < succ m then rec_val x (f' m) else default : rfl
|
f' (succ m) x = if measure x < succ m then rec_val x (f' m) else default : rfl
|
||||||
... = default : if_neg H1 _ _,
|
... = default : if_neg H1,
|
||||||
have H3 : restrict default measure f (succ m) x = default,
|
have H3 : restrict default measure f (succ m) x = default,
|
||||||
from if_neg H1 _ _,
|
from if_neg H1,
|
||||||
show f' (succ m) x = restrict default measure f (succ m) x,
|
show f' (succ m) x = restrict default measure f (succ m) x,
|
||||||
from trans H2 (symm H3)))
|
from trans H2 (symm H3)))
|
||||||
|
|
||||||
|
|
Loading…
Add table
Reference in a new issue