feat(frontends/lean): rename '[fact]' to '[visible]'

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2014-09-08 07:47:42 -07:00
parent 35e68fea76
commit b4793df653
19 changed files with 50 additions and 50 deletions

View file

@ -121,7 +121,7 @@ theorem comp {A B : Type} {R : A → A → Prop} {abs : A → B} {rep : B → A}
(Q : is_quotient R abs rep) {C : B → Type} {f : forall (a : A), C (abs a)} (Q : is_quotient R abs rep) {C : B → Type} {f : forall (a : A), C (abs a)}
(H : forall (r s : A) (H' : R r s), eq.rec_on (eq_abs Q H') (f r) = f s) (H : forall (r s : A) (H' : R r s), eq.rec_on (eq_abs Q H') (f r) = f s)
{a : A} (Ha : R a a) : rec Q f (abs a) = f a := {a : A} (Ha : R a a) : rec Q f (abs a) = f a :=
have H2 [fact] : R a (rep (abs a)), from R_rep_abs Q Ha, have H2 [visible] : R a (rep (abs a)), from R_rep_abs Q Ha,
calc calc
rec Q f (abs a) = eq.rec_on _ (f (rep (abs a))) : rfl rec Q f (abs a) = eq.rec_on _ (f (rep (abs a))) : rfl
... = eq.rec_on _ (eq.rec_on _ (f a)) : {(H _ _ H2)⁻¹} ... = eq.rec_on _ (eq.rec_on _ (f a)) : {(H _ _ H2)⁻¹}

View file

@ -14,13 +14,13 @@ axiom piext {A : Type} {B B' : A → Type} {H : inhabited (Π x, B x)} :
theorem cast_app {A : Type} {B B' : A → Type} (H : (Π x, B x) = (Π x, B' x)) (f : Π x, B x) theorem cast_app {A : Type} {B B' : A → Type} (H : (Π x, B x) = (Π x, B' x)) (f : Π x, B x)
(a : A) : cast H f a == f a := (a : A) : cast H f a == f a :=
have Hi [fact] : inhabited (Π x, B x), from inhabited.mk f, have Hi [visible] : inhabited (Π x, B x), from inhabited.mk f,
have Hb : B = B', from piext H, have Hb : B = B', from piext H,
cast_app' Hb f a cast_app' Hb f a
theorem hcongr_fun {A : Type} {B B' : A → Type} {f : Π x, B x} {f' : Π x, B' x} (a : A) theorem hcongr_fun {A : Type} {B B' : A → Type} {f : Π x, B x} {f' : Π x, B' x} (a : A)
(H : f == f') : f a == f' a := (H : f == f') : f a == f' a :=
have Hi [fact] : inhabited (Π x, B x), from inhabited.mk f, have Hi [visible] : inhabited (Π x, B x), from inhabited.mk f,
have Hb : B = B', from piext (type_eq H), have Hb : B = B', from piext (type_eq H),
hcongr_fun' a H Hb hcongr_fun' a H Hb

View file

@ -53,5 +53,5 @@ Ht ▸ He ▸ (if_cond_congr Hc t₁ e₁)
theorem if_congr {c₁ c₂ : Prop} {H₁ : decidable c₁} {A : Type} {t₁ t₂ e₁ e₂ : A} (Hc : c₁ ↔ c₂) (Ht : t₁ = t₂) (He : e₁ = e₂) : theorem if_congr {c₁ c₂ : Prop} {H₁ : decidable c₁} {A : Type} {t₁ t₂ e₁ e₂ : A} (Hc : c₁ ↔ c₂) (Ht : t₁ = t₂) (He : e₁ = e₂) :
(if c₁ then t₁ else e₁) = (@ite c₂ (decidable_iff_equiv H₁ Hc) A t₂ e₂) := (if c₁ then t₁ else e₁) = (@ite c₂ (decidable_iff_equiv H₁ Hc) A t₂ e₂) :=
have H2 [fact] : decidable c₂, from (decidable_iff_equiv H₁ Hc), have H2 [visible] : decidable c₂, from (decidable_iff_equiv H₁ Hc),
if_congr_aux Hc Ht He if_congr_aux Hc Ht He

View file

@ -70,7 +70,7 @@
;; place holder ;; place holder
(,(rx symbol-start "_" symbol-end) . 'font-lock-preprocessor-face) (,(rx symbol-start "_" symbol-end) . 'font-lock-preprocessor-face)
;; modifiers ;; modifiers
(,(rx (or "\[notation\]" "\[protected\]" "\[private\]" "\[instance\]" "\[class\]" "\[coercion\]" "\[inline\]")) . 'font-lock-doc-face) (,(rx (or "\[notation\]" "\[visible\]" "\[protected\]" "\[private\]" "\[instance\]" "\[class\]" "\[coercion\]" "\[inline\]")) . 'font-lock-doc-face)
;; tactics ;; tactics
(,(rx symbol-start (,(rx symbol-start
(or "\\b.*_tac" "Cond" "or_else" "then" "try" "when" "assumption" "apply" "back" "beta" "done" "exact" "repeat") (or "\\b.*_tac" "Cond" "or_else" "then" "try" "when" "assumption" "apply" "back" "beta" "done" "exact" "repeat")

View file

@ -25,7 +25,7 @@ Author: Leonardo de Moura
namespace lean { namespace lean {
namespace notation { namespace notation {
static name g_llevel_curly(".{"), g_rcurly("}"), g_in("in"), g_colon(":"), g_assign(":="); static name g_llevel_curly(".{"), g_rcurly("}"), g_in("in"), g_colon(":"), g_assign(":=");
static name g_comma(","), g_fact("[fact]"), g_from("from"), g_using("using"); static name g_comma(","), g_visible("[visible]"), g_from("from"), g_using("using");
static name g_then("then"), g_have("have"), g_by("by"), g_qed("qed"), g_end("end"); static name g_then("then"), g_have("have"), g_by("by"), g_qed("qed"), g_end("end");
static name g_take("take"), g_assume("assume"), g_show("show"), g_fun("fun"); static name g_take("take"), g_assume("assume"), g_show("show"), g_fun("fun");
@ -57,10 +57,10 @@ static expr parse_let_body(parser & p, pos_info const & pos) {
} }
} }
static void parse_let_modifiers(parser & p, bool & is_fact) { static void parse_let_modifiers(parser & p, bool & is_visible) {
while (true) { while (true) {
if (p.curr_is_token(g_fact)) { if (p.curr_is_token(g_visible)) {
is_fact = true; is_visible = true;
p.next(); p.next();
} else { } else {
break; break;
@ -73,12 +73,12 @@ static expr parse_let(parser & p, pos_info const & pos) {
if (p.parse_local_notation_decl()) { if (p.parse_local_notation_decl()) {
return parse_let_body(p, pos); return parse_let_body(p, pos);
} else { } else {
auto id_pos = p.pos(); auto id_pos = p.pos();
name id = p.check_atomic_id_next("invalid let declaration, identifier expected"); name id = p.check_atomic_id_next("invalid let declaration, identifier expected");
bool is_fact = false; bool is_visible = false;
optional<expr> type; optional<expr> type;
expr value; expr value;
parse_let_modifiers(p, is_fact); parse_let_modifiers(p, is_visible);
if (p.curr_is_token(g_assign)) { if (p.curr_is_token(g_assign)) {
p.next(); p.next();
value = p.parse_expr(); value = p.parse_expr();
@ -195,22 +195,22 @@ static expr parse_proof(parser & p, expr const & prop) {
static expr parse_have_core(parser & p, pos_info const & pos, optional<expr> const & prev_local) { static expr parse_have_core(parser & p, pos_info const & pos, optional<expr> const & prev_local) {
auto id_pos = p.pos(); auto id_pos = p.pos();
bool is_fact = false; bool is_visible = false;
name id; name id;
expr prop; expr prop;
if (p.curr_is_token(g_fact)) { if (p.curr_is_token(g_visible)) {
p.next(); p.next();
is_fact = true; is_visible = true;
id = p.mk_fresh_name(); id = p.mk_fresh_name();
prop = p.parse_expr(); prop = p.parse_expr();
} else if (p.curr_is_identifier()) { } else if (p.curr_is_identifier()) {
id = p.get_name_val(); id = p.get_name_val();
p.next(); p.next();
if (p.curr_is_token(g_fact)) { if (p.curr_is_token(g_visible)) {
p.next(); p.next();
p.check_token_next(g_colon, "invalid 'have' declaration, ':' expected"); p.check_token_next(g_colon, "invalid 'have' declaration, ':' expected");
is_fact = true; is_visible = true;
prop = p.parse_expr(); prop = p.parse_expr();
} else if (p.curr_is_token(g_colon)) { } else if (p.curr_is_token(g_colon)) {
p.next(); p.next();
prop = p.parse_expr(); prop = p.parse_expr();
@ -237,7 +237,7 @@ static expr parse_have_core(parser & p, pos_info const & pos, optional<expr> con
} }
p.check_token_next(g_comma, "invalid 'have' declaration, ',' expected"); p.check_token_next(g_comma, "invalid 'have' declaration, ',' expected");
parser::local_scope scope(p); parser::local_scope scope(p);
binder_info bi = mk_contextual_info(is_fact); binder_info bi = mk_contextual_info(is_visible);
expr l = p.save_pos(mk_local(id, prop, bi), pos); expr l = p.save_pos(mk_local(id, prop, bi), pos);
p.add_local(l); p.add_local(l);
expr body; expr body;
@ -280,12 +280,12 @@ static expr parse_obtain(parser & p, unsigned, expr const *, pos_info const & po
unsigned num_ps = ps.size(); unsigned num_ps = ps.size();
if (num_ps < 2) if (num_ps < 2)
throw parser_error("invalid 'obtain' expression, at least 2 binders expected", b_pos); throw parser_error("invalid 'obtain' expression, at least 2 binders expected", b_pos);
bool is_fact = false; bool is_visible = false;
if (p.curr_is_token(g_fact)) { if (p.curr_is_token(g_visible)) {
p.next(); p.next();
is_fact = true; is_visible = true;
} }
if (!is_fact) { if (!is_visible) {
expr H = ps[num_ps-1]; expr H = ps[num_ps-1];
ps[num_ps-1] = update_local(H, mlocal_type(H), local_info(H).update_contextual(false)); ps[num_ps-1] = update_local(H, mlocal_type(H), local_info(H).update_contextual(false));
} }

View file

@ -43,7 +43,7 @@ static format g_in_fmt = highlight_keyword(format("in"));
static format g_assign_fmt = highlight_keyword(format(":=")); static format g_assign_fmt = highlight_keyword(format(":="));
static format g_have_fmt = highlight_keyword(format("have")); static format g_have_fmt = highlight_keyword(format("have"));
static format g_from_fmt = highlight_keyword(format("from")); static format g_from_fmt = highlight_keyword(format("from"));
static format g_fact_fmt = highlight_keyword(format("[fact]")); static format g_visible_fmt = highlight_keyword(format("[visible]"));
static format g_show_fmt = highlight_keyword(format("show")); static format g_show_fmt = highlight_keyword(format("show"));
static format g_explicit_fmt = highlight_keyword(format("@")); static format g_explicit_fmt = highlight_keyword(format("@"));
@ -362,7 +362,7 @@ auto pretty_fn::pp_have(expr const & e) -> result {
format body_fmt = pp_child(body, 0).first; format body_fmt = pp_child(body, 0).first;
format r = g_have_fmt + space() + format(n) + space(); format r = g_have_fmt + space() + format(n) + space();
if (binding_info(binding).is_contextual()) if (binding_info(binding).is_contextual())
r += compose(g_fact_fmt, space()); r += compose(g_visible_fmt, space());
r += colon() + nest(m_indent, line() + type_fmt + comma() + space() + g_from_fmt); r += colon() + nest(m_indent, line() + type_fmt + comma() + space() + g_from_fmt);
r = group(r); r = group(r);
r += nest(m_indent, line() + proof_fmt + comma()); r += nest(m_indent, line() + proof_fmt + comma());

View file

@ -77,7 +77,7 @@ token_table init_token_table() {
{"+", g_plus_prec}, {g_cup, g_cup_prec}, {"->", g_arrow_prec}, {nullptr, 0}}; {"+", g_plus_prec}, {g_cup, g_cup_prec}, {"->", g_arrow_prec}, {nullptr, 0}};
char const * commands[] = {"theorem", "axiom", "variable", "definition", "coercion", char const * commands[] = {"theorem", "axiom", "variable", "definition", "coercion",
"variables", "[private]", "[protected]", "[inline]", "[fact]", "[instance]", "variables", "[private]", "[protected]", "[inline]", "[visible]", "[instance]",
"[class]", "[module]", "[coercion]", "[class]", "[module]", "[coercion]",
"abbreviation", "opaque_hint", "evaluate", "check", "print", "end", "namespace", "section", "import", "abbreviation", "opaque_hint", "evaluate", "check", "print", "end", "namespace", "section", "import",
"abbreviation", "inductive", "record", "renaming", "extends", "structure", "module", "universe", "abbreviation", "inductive", "record", "renaming", "extends", "structure", "module", "universe",

View file

@ -28,7 +28,7 @@ void check_has_no_local(expr const & v, expr const & e, char const * tac_name) {
if (is_local(l)) if (is_local(l))
throw tactic_exception(e, sstream() << "tactic '" << tac_name << "' contains reference to local '" << local_pp_name(l) throw tactic_exception(e, sstream() << "tactic '" << tac_name << "' contains reference to local '" << local_pp_name(l)
<< "' which is not visible by this tactic " << "' which is not visible by this tactic "
<< "possible causes: it was not marked as [fact]; it was destructued"); << "possible causes: it was not marked as [visible]; it was destructued");
return has_local(l); return has_local(l);
}); });
} }

View file

@ -5,10 +5,10 @@ variables a b c : bool
axiom H1 : a = b axiom H1 : a = b
axiom H2 : b = c axiom H2 : b = c
check have e1 [fact] : a = b, from H1, check have e1 [visible] : a = b, from H1,
have e2 : a = c, by apply trans; apply e1; apply H2, have e2 : a = c, by apply trans; apply e1; apply H2,
have e3 : c = a, from e2⁻¹, have e3 : c = a, from e2⁻¹,
have e4 [fact] : b = a, from e1⁻¹, have e4 [visible] : b = a, from e1⁻¹,
have e5 : b = c, from e4 ⬝ e2, have e5 : b = c, from e4 ⬝ e2,
have e6 : a = a, from H1 ⬝ H2 ⬝ H2⁻¹ ⬝ H1⁻¹ ⬝ H1 ⬝ H2 ⬝ H2⁻¹ ⬝ H1⁻¹, have e6 : a = a, from H1 ⬝ H2 ⬝ H2⁻¹ ⬝ H1⁻¹ ⬝ H1 ⬝ H2 ⬝ H2⁻¹ ⬝ H1⁻¹,
e3 ⬝ e2 e3 ⬝ e2

View file

@ -1,7 +1,7 @@
have e1 [fact] : eq a b, from H1, have e1 [visible] : eq a b, from H1,
have e2 : eq a c, from trans e1 H2, have e2 : eq a c, from trans e1 H2,
have e3 : eq c a, from symm e2, have e3 : eq c a, from symm e2,
have e4 [fact] : eq b a, from symm e1, have e4 [visible] : eq b a, from symm e1,
have e5 : eq b c, from trans e4 e2, have e5 : eq b c, from trans e4 e2,
have e6 : eq a a, from have e6 : eq a a, from
trans H1 (trans H2 (trans (symm H2) (trans (symm H1) (trans H1 (trans H2 (trans (symm H2) (symm H1))))))), trans H1 (trans H2 (trans (symm H2) (trans (symm H1) (trans H1 (trans H2 (trans (symm H2) (symm H1))))))),

View file

@ -14,8 +14,8 @@ check let bool := Type.{0},
check let bool := Type.{0}, check let bool := Type.{0},
and (p q : bool) := ∀ c : bool, (p → q → c) → c, and (p q : bool) := ∀ c : bool, (p → q → c) → c,
infixl `∧`:25 := and, infixl `∧`:25 := and,
and_intro [fact] (p q : bool) (H1 : p) (H2 : q) : q ∧ p and_intro [visible] (p q : bool) (H1 : p) (H2 : q) : q ∧ p
:= λ (c : bool) (H : p → q → c), H H1 H2, := λ (c : bool) (H : p → q → c), H H1 H2,
and_elim_left (p q : bool) (H : p ∧ q) : p and_elim_left (p q : bool) (H : p ∧ q) : p
:= H p (λ (H1 : p) (H2 : q), H1), := H p (λ (H1 : p) (H2 : q), H1),

View file

@ -4,5 +4,5 @@ variable p : num → num → num → Prop
axiom H1 : ∃ x y z, p x y z axiom H1 : ∃ x y z, p x y z
axiom H2 : ∀ {x y z : num}, p x y z → p x x x axiom H2 : ∀ {x y z : num}, p x y z → p x x x
theorem tst : ∃ x, p x x x theorem tst : ∃ x, p x x x
:= obtain a b c H [fact], from H1, := obtain a b c H [visible], from H1,
by (apply exists_intro; apply H2; eassumption) by (apply exists_intro; apply H2; eassumption)

View file

@ -3,6 +3,6 @@ variables a b c : Prop
axiom Ha : a axiom Ha : a
axiom Hb : b axiom Hb : b
axiom Hc : c axiom Hc : c
check have H1 [fact] : a, from Ha, check have H1 [visible] : a, from Ha,
have H2 : a, from H1, have H2 : a, from H1,
H2 H2

View file

@ -8,11 +8,11 @@ axiom Hb : b
axiom Hc : c axiom Hc : c
check check
have a ∧ b, from and_intro a b Ha Hb, have a ∧ b, from and_intro a b Ha Hb,
have [fact] b ∧ a, from and_intro b a Hb Ha, have [visible] b ∧ a, from and_intro b a Hb Ha,
have H : a ∧ b, from and_intro a b Ha Hb, have H : a ∧ b, from and_intro a b Ha Hb,
have H [fact] : a ∧ b, from and_intro a b Ha Hb, have H [visible] : a ∧ b, from and_intro a b Ha Hb,
then have a ∧ b, from and_intro a b Ha Hb, then have a ∧ b, from and_intro a b Ha Hb,
then have [fact] b ∧ a, from and_intro b a Hb Ha, then have [visible] b ∧ a, from and_intro b a Hb Ha,
then have H : a ∧ b, from and_intro a b Ha Hb, then have H : a ∧ b, from and_intro a b Ha Hb,
then have H [fact] : a ∧ b, from and_intro a b Ha Hb, then have H [visible] : a ∧ b, from and_intro a b Ha Hb,
Ha Ha

View file

@ -2,7 +2,7 @@ import logic
open tactic open tactic
theorem tst (a b : Prop) (H : a ↔ b) : b ↔ a theorem tst (a b : Prop) (H : a ↔ b) : b ↔ a
:= have H1 [fact] : a → b, -- We need to mark H1 as fact, otherwise it is not visible by tactics := have H1 [visible] : a → b, -- We need to mark H1 as fact, otherwise it is not visible by tactics
from iff.elim_left H, from iff.elim_left H,
by apply iff.intro; by apply iff.intro;
apply (assume Hb, iff.elim_right H Hb); apply (assume Hb, iff.elim_right H Hb);

View file

@ -25,8 +25,8 @@ mk (congr (get_eq C1) (get_eq C2))
theorem test1 (S : Type) (T : Type) (f1 f2 : S → T) (s1 s2 : S) (Hf : f1 = f2) (Hs : s1 = s2) : theorem test1 (S : Type) (T : Type) (f1 f2 : S → T) (s1 s2 : S) (Hf : f1 = f2) (Hs : s1 = s2) :
f1 s1 = f2 s2 := f1 s1 = f2 s2 :=
have Rs [fact] : simplifies_to f1 f2, from mk Hf, have Rs [visible] : simplifies_to f1 f2, from mk Hf,
have Cs [fact] : simplifies_to s1 s2, from mk Hs, have Cs [visible] : simplifies_to s1 s2, from mk Hs,
infer_eq _ _ infer_eq _ _
end simplifies_to end simplifies_to

View file

@ -68,7 +68,7 @@ definition dirprodf {X : Type} {Y : Type} {X' : Type} {Y' : Type} (f : X → Y)
:= dirprodpair (f (pr1 xx')) (f' (pr2 xx')) := dirprodpair (f (pr1 xx')) (f' (pr2 xx'))
definition ddualand {X : Type} {Y : Type} {P : Type} (xp : (X → P) → P) (yp : (Y → P) → P) : (dirprod X Y → P) → P definition ddualand {X : Type} {Y : Type} {P : Type} (xp : (X → P) → P) (yp : (Y → P) → P) : (dirprod X Y → P) → P
:= λ X0, := λ X0,
let int1 [fact] := λ (ypp : (Y → P) → P) (x : X), yp (λ y : Y, X0 (dirprodpair x y)) in let int1 := λ (ypp : (Y → P) → P) (x : X), yp (λ y : Y, X0 (dirprodpair x y)) in
xp (int1 yp) xp (int1 yp)
definition neg (X : Type) : Type := X → empty definition neg (X : Type) : Type := X → empty

View file

@ -7,8 +7,8 @@ axiom H2 : b = c
check show a = c, from H1 ⬝ H2 check show a = c, from H1 ⬝ H2
print "------------" print "------------"
check have e1 [fact] : a = b, from H1, check have e1 [visible] : a = b, from H1,
have e2 : a = c, by apply eq.trans; apply e1; apply H2, have e2 : a = c, by apply eq.trans; apply e1; apply H2,
have e3 : c = a, from e2⁻¹, have e3 : c = a, from e2⁻¹,
have e4 [fact] : b = a, from e1⁻¹, have e4 [visible] : b = a, from e1⁻¹,
show b = c, from e1⁻¹ ⬝ e2 show b = c, from e1⁻¹ ⬝ e2

View file

@ -1,8 +1,8 @@
show eq a c, from eq.trans H1 H2 : eq a c show eq a c, from eq.trans H1 H2 : eq a c
------------ ------------
have e1 [fact] : eq a b, from H1, have e1 [visible] : eq a b, from H1,
have e2 : eq a c, from eq.trans e1 H2, have e2 : eq a c, from eq.trans e1 H2,
have e3 : eq c a, from eq.symm e2, have e3 : eq c a, from eq.symm e2,
have e4 [fact] : eq b a, from eq.symm e1, have e4 [visible] : eq b a, from eq.symm e1,
show eq b c, from eq.trans (eq.symm e1) e2 : show eq b c, from eq.trans (eq.symm e1) e2 :
eq b c eq b c