refactor(library/data/vector): cleanup, use variables, add concat

This commit is contained in:
Leonardo de Moura 2014-11-15 22:36:52 -08:00
parent 85f24e4c80
commit b5404cd979

View file

@ -12,10 +12,10 @@ namespace vector
notation a :: b := cons a b notation a :: b := cons a b
notation `[` l:(foldr `,` (h t, cons h t) nil) `]` := l notation `[` l:(foldr `,` (h t, cons h t) nil) `]` := l
section sc_vector variables {A B C : Type}
variable {T : Type} variables {n m : nat}
protected definition is_inhabited [instance] (A : Type) (H : inhabited A) (n : nat) : inhabited (vector A n) := protected definition is_inhabited [instance] (H : inhabited A) (n : nat) : inhabited (vector A n) :=
nat.rec_on n nat.rec_on n
(inhabited.mk nil) (inhabited.mk nil)
(λ (n : nat) (iH : inhabited (vector A n)), (λ (n : nat) (iH : inhabited (vector A n)),
@ -23,17 +23,17 @@ namespace vector
(λa, inhabited.destruct iH (λa, inhabited.destruct iH
(λv, inhabited.mk (a :: v)))) (λv, inhabited.mk (a :: v))))
theorem z_cases_on {A : Type} {C : vector A 0 → Type} (v : vector A 0) (Hnil : C nil) : C v := theorem z_cases_on {C : vector A 0 → Type} (v : vector A 0) (Hnil : C nil) : C v :=
have aux : ∀ (n₁ : nat) (v₁ : vector A n₁) (eq₁ : n₁ = 0) (eq₂ : v₁ == v) (Hnil : C nil), C v, from have aux : ∀ (n₁ : nat) (v₁ : vector A n₁) (eq₁ : n₁ = 0) (eq₂ : v₁ == v) (Hnil : C nil), C v, from
λ n₁ v₁, vector.rec_on v₁ λ n₁ v₁, vector.rec_on v₁
(λ (eq₁ : 0 = 0) (eq₂ : nil == v) (Hnil : C nil), eq.rec_on (heq.to_eq eq₂) Hnil) (λ (eq₁ : 0 = 0) (eq₂ : nil == v) (Hnil : C nil), eq.rec_on (heq.to_eq eq₂) Hnil)
(λ h₂ n₂ v₂ ih eq₁ eq₂ hnil, nat.no_confusion eq₁), (λ h₂ n₂ v₂ ih eq₁ eq₂ hnil, nat.no_confusion eq₁),
aux 0 v rfl !heq.refl Hnil aux 0 v rfl !heq.refl Hnil
theorem vector0_eq_nil (v : vector T 0) : v = nil := theorem vector0_eq_nil (v : vector A 0) : v = nil :=
z_cases_on v rfl z_cases_on v rfl
protected definition destruct {A : Type} {n : nat} (v : vector A (succ n)) {P : Π {n : nat}, vector A (succ n) → Type} protected definition destruct (v : vector A (succ n)) {P : Π {n : nat}, vector A (succ n) → Type}
(H : Π {n : nat} (h : A) (t : vector A n), P (h :: t)) : P v := (H : Π {n : nat} (h : A) (t : vector A n), P (h :: t)) : P v :=
have aux : ∀ (n₁ : nat) (v₁ : vector A n₁) (eq₁ : n₁ = succ n) (eq₂ : v₁ == v), P v, from have aux : ∀ (n₁ : nat) (v₁ : vector A n₁) (eq₁ : n₁ = succ n) (eq₂ : v₁ == v), P v, from
(λ n₁ v₁, vector.rec_on v₁ (λ n₁ v₁, vector.rec_on v₁
@ -50,106 +50,100 @@ namespace vector
definition nz_cases_on := @destruct definition nz_cases_on := @destruct
definition head {A : Type} {n : nat} (v : vector A (succ n)) : A := definition head (v : vector A (succ n)) : A :=
destruct v (λ n h t, h) destruct v (λ n h t, h)
definition tail {A : Type} {n : nat} (v : vector A (succ n)) : vector A n := definition tail (v : vector A (succ n)) : vector A n :=
destruct v (λ n h t, t) destruct v (λ n h t, t)
example (A : Type) (n : nat) (h : A) (t : vector A n) : head (h :: t) :: tail (h :: t) = h :: t := theorem head_cons (h : A) (t : vector A n) : head (h :: t) = h :=
rfl rfl
theorem head_cons {A : Type} {n : nat} (h : A) (t : vector A n) : head (h :: t) = h := theorem tail_cons (h : A) (t : vector A n) : tail (h :: t) = t :=
rfl rfl
theorem tail_cons {A : Type} {n : nat} (h : A) (t : vector A n) : tail (h :: t) = t := theorem eta (v : vector A (succ n)) : head v :: tail v = v :=
rfl
theorem eta {A : Type} {n : nat} (v : vector A (succ n)) : head v :: tail v = v :=
-- TODO(Leo): replace 'head_cons h t ▸ tail_cons h t ▸ rfl' with rfl -- TODO(Leo): replace 'head_cons h t ▸ tail_cons h t ▸ rfl' with rfl
-- after issue #318 is fixed -- after issue #318 is fixed
destruct v (λ n h t, head_cons h t ▸ tail_cons h t ▸ rfl) destruct v (λ n h t, head_cons h t ▸ tail_cons h t ▸ rfl)
definition last {A : Type} {n : nat} : vector A (succ n) → A := definition last : vector A (succ n) → A :=
nat.rec_on n nat.rec_on n
(λ (v : vector A (succ zero)), head v) (λ (v : vector A (succ zero)), head v)
(λ n₁ r v, r (tail v)) (λ n₁ r v, r (tail v))
theorem last_singleton {A : Type} (a : A) : last (a :: nil) = a := theorem last_singleton (a : A) : last (a :: nil) = a :=
rfl rfl
theorem last_cons {A : Type} {n} (a : A) (v : vector A (succ n)) : last (a :: v) = last v := theorem last_cons (a : A) (v : vector A (succ n)) : last (a :: v) = last v :=
rfl rfl
definition const {A : Type} (n : nat) (a : A) : vector A n := definition const (n : nat) (a : A) : vector A n :=
nat.rec_on n nat.rec_on n
nil nil
(λ n₁ r, a :: r) (λ n₁ r, a :: r)
theorem head_const {A : Type} (n : nat) (a : A) : head (const (succ n) a) = a := theorem head_const (n : nat) (a : A) : head (const (succ n) a) = a :=
rfl rfl
theorem last_const {A : Type} (n : nat) (a : A) : last (const (succ n) a) = a := theorem last_const (n : nat) (a : A) : last (const (succ n) a) = a :=
nat.induction_on n nat.induction_on n
rfl rfl
(λ n₁ ih, ih) (λ n₁ ih, ih)
definition map {A B : Type} {n : nat} (f : A → B) (v : vector A n) : vector B n := definition map (f : A → B) (v : vector A n) : vector B n :=
nat.rec_on n nat.rec_on n
(λ v, nil) (λ v, nil)
(λ n₁ r v, f (head v) :: r (tail v)) (λ n₁ r v, f (head v) :: r (tail v))
v v
theorem map_vnil {A B : Type} {n : nat} (f : A → B) : map f nil = nil := theorem map_vnil (f : A → B) : map f nil = nil :=
rfl rfl
theorem map_vcons {A B : Type} {n : nat} (f : A → B) (h : A) (t : vector A n) : map f (h :: t) = f h :: map f t := theorem map_vcons (f : A → B) (h : A) (t : vector A n) : map f (h :: t) = f h :: map f t :=
rfl rfl
definition map2 {A B C : Type} {n : nat} (f : A → B → C) (v₁ : vector A n) (v₂ : vector B n) : vector C n := definition map2 (f : A → B → C) (v₁ : vector A n) (v₂ : vector B n) : vector C n :=
nat.rec_on n nat.rec_on n
(λ v₁ v₂, nil) (λ v₁ v₂, nil)
(λ n₁ r v₁ v₂, f (head v₁) (head v₂) :: r (tail v₁) (tail v₂)) (λ n₁ r v₁ v₂, f (head v₁) (head v₂) :: r (tail v₁) (tail v₂))
v₁ v₂ v₁ v₂
theorem map2_vnil {A B C : Type} {n : nat} (f : A → B → C) : map2 f nil nil = nil := theorem map2_vnil (f : A → B → C) : map2 f nil nil = nil :=
rfl rfl
theorem map2_vcons {A B C : Type} {n : nat} (f : A → B → C) (h₁ : A) (h₂ : B) (t₁ : vector A n) (t₂ : vector B n) : theorem map2_vcons (f : A → B → C) (h₁ : A) (h₂ : B) (t₁ : vector A n) (t₂ : vector B n) :
map2 f (h₁ :: t₁) (h₂ :: t₂) = f h₁ h₂ :: map2 f t₁ t₂ := map2 f (h₁ :: t₁) (h₂ :: t₂) = f h₁ h₂ :: map2 f t₁ t₂ :=
rfl rfl
definition append_core {A : Type} {n m : nat} (w : vector A m) (v : vector A n) : vector A (n + m) := definition append_core (w : vector A m) (v : vector A n) : vector A (n + m) :=
rec_on w rec_on w
v v
(λ (a₁ : A) (m₁ : nat) (v₁ : vector A m₁) (r₁ : vector A (n + m₁)), a₁ :: r₁) (λ (a₁ : A) (m₁ : nat) (v₁ : vector A m₁) (r₁ : vector A (n + m₁)), a₁ :: r₁)
theorem append_vnil {A : Type} {n : nat} (v : vector A n) : append_core nil v = v := theorem append_vnil (v : vector A n) : append_core nil v = v :=
rfl rfl
theorem append_vcons {A : Type} {n m : nat} (h : A) (t : vector A n) (v : vector A m) : theorem append_vcons (h : A) (t : vector A n) (v : vector A m) :
append_core (h :: t) v = h :: (append_core t v) := append_core (h :: t) v = h :: (append_core t v) :=
rfl rfl
definition append {A : Type} {n m : nat} (w : vector A n) (v : vector A m) : vector A (n + m) := definition append (w : vector A n) (v : vector A m) : vector A (n + m) :=
eq.rec_on !add.comm (append_core w v) eq.rec_on !add.comm (append_core w v)
example : append (1 :: 2 :: nil) (3 :: nil) = 1 :: 2 :: 3 :: nil := definition unzip : vector (A × B) n → vector A n × vector B n :=
rfl
definition unzip {A B : Type} {n : nat} : vector (A × B) n → vector A n × vector B n :=
nat.rec_on n nat.rec_on n
(λ v, (nil, nil)) (λ v, (nil, nil))
(λ a r v, (λ a r v,
let t := r (tail v) in let t := r (tail v) in
(pr₁ (head v) :: pr₁ t, pr₂ (head v) :: pr₂ t)) (pr₁ (head v) :: pr₁ t, pr₂ (head v) :: pr₂ t))
definition zip {A B : Type} {n : nat} : vector A n → vector B n → vector (A × B) n := definition zip : vector A n → vector B n → vector (A × B) n :=
nat.rec_on n nat.rec_on n
(λ v₁ v₂, nil) (λ v₁ v₂, nil)
(λ a r v₁ v₂, (head v₁, head v₂) :: r (tail v₁) (tail v₂)) (λ a r v₁ v₂, (head v₁, head v₂) :: r (tail v₁) (tail v₂))
theorem unzip_zip {A B : Type} {n : nat} : ∀ (v₁ : vector A n) (v₂ : vector B n), unzip (zip v₁ v₂) = (v₁, v₂) := theorem unzip_zip : ∀ (v₁ : vector A n) (v₂ : vector B n), unzip (zip v₁ v₂) = (v₁, v₂) :=
nat.induction_on n nat.induction_on n
(λ (v₁ : vector A zero) (v₂ : vector B zero), (λ (v₁ : vector A zero) (v₂ : vector B zero),
z_cases_on v₁ (z_cases_on v₂ rfl)) z_cases_on v₁ (z_cases_on v₂ rfl))
@ -164,7 +158,7 @@ namespace vector
... = (v₁, head v₂ :: tail v₂) : vector.eta ... = (v₁, head v₂ :: tail v₂) : vector.eta
... = (v₁, v₂) : vector.eta) ... = (v₁, v₂) : vector.eta)
theorem zip_unzip {A B : Type} {n : nat} : ∀ (v : vector (A × B) n), zip (pr₁ (unzip v)) (pr₂ (unzip v)) = v := theorem zip_unzip : ∀ (v : vector (A × B) n), zip (pr₁ (unzip v)) (pr₂ (unzip v)) = v :=
nat.induction_on n nat.induction_on n
(λ (v : vector (A × B) zero), (λ (v : vector (A × B) zero),
z_cases_on v rfl) z_cases_on v rfl)
@ -176,294 +170,36 @@ namespace vector
... = head v :: tail v : prod.eta ... = head v :: tail v : prod.eta
... = v : vector.eta) ... = v : vector.eta)
section
universe variables l₁ l₂
variable {A : Type.{l₁}}
variable {C : Π (n : nat), vector A n → Type.{l₂+1}}
definition brec_on {n : nat} (v : vector A n) (H : Π (n : nat) (v : vector A n), @below A C n v → C n v) : C n v :=
have general : C n v × @below A C n v, from
rec_on v
(pair (H zero nil unit.star) unit.star)
(λ (a₁ : A) (n₁ : nat) (v₁ : vector A n₁) (r₁ : C n₁ v₁ × @below A C n₁ v₁),
have b : @below A C _ (a₁ :: v₁), from
r₁,
have c : C (succ n₁) (a₁ :: v₁), from
H (succ n₁) (a₁ :: v₁) b,
pair c b),
pr₁ general
end
-- STOPPED HERE
private theorem rec_nonempty_lem {C : Π{n}, vector T (succ n) → Type} {n : } (v : vector T n)
(Hone : Πa, C [a]) (Hcons : Πa {n} (v : vector T (succ n)), C v → C (a :: v))
: ∀{m} (H : n = succ m), C (cast (congr_arg (vector T) H) v) :=
cases_on v (take m (H : 0 = succ m), false.rec _ (absurd (H⁻¹) !succ_ne_zero))
(take x n v m H,
have H2 : C (x::v), from
sorry,
-- rec_on v
-- (Hone x)
-- (take y n w IH, Hcons x (y::w)),
show C (cast (congr_arg (vector T) H) (x::v)), from
sorry
)
theorem rec_nonempty {C : Π{n}, vector T (succ n) → Type} {n : } (v : vector T (succ n))
(Hone : Πa, C [a]) (Hcons : Πa {n} (v : vector T (succ n)), C v → C (a :: v)) : C v :=
sorry
private theorem case_succ_lem {C : Π{n}, vector T (succ n) → Type} {n : } (v : vector T n)
(H : Πa {n} (v : vector T n), C (a :: v))
: ∀{m} (H : n = succ m), C (cast (congr_arg (vector T) H) v) :=
sorry
theorem case_succ {C : Π{n}, vector T (succ n) → Type} {n : } (v : vector T (succ n))
(H : Πa {n} (v : vector T n), C (a :: v)) : C v :=
sorry
-- Concat
-- ------
definition cast_subst {A : Type} {P : A → Type} {a a' : A} (H : a = a') (B : P a) : P a' :=
cast (congr_arg P H) B
definition concat {n m : } (v : vector T n) (w : vector T m) : vector T (n + m) :=
vector.rec (cast_subst (!add.zero_left⁻¹) w) (λx n w' u, cast_subst (!add.succ_left⁻¹) (x::u)) v
notation h ++ t := concat h t
theorem nil_concat {n : } (v : vector T n) : nil ++ v = cast_subst (!add.zero_left⁻¹) v := rfl
theorem cons_concat {n m : } (x : T) (v : vector T n) (w : vector T m)
: (x :: v) ++ w = cast_subst (!add.succ_left⁻¹) (x::(v++w)) := rfl
/-
theorem cons_concat (x : T) (s t : list T) : (x :: s) ++ t = x :: (s ++ t) := refl _
theorem concat_nil (t : list T) : t ++ nil = t :=
list_induction_on t (refl _)
(take (x : T) (l : list T) (H : concat l nil = l),
show concat (cons x l) nil = cons x l, from H ▸ refl _)
theorem concat_assoc (s t u : list T) : s ++ t ++ u = s ++ (t ++ u) :=
list_induction_on s (refl _)
(take x l,
assume H : concat (concat l t) u = concat l (concat t u),
calc
concat (concat (cons x l) t) u = cons x (concat (concat l t) u) : refl _
... = cons x (concat l (concat t u)) : { H }
... = concat (cons x l) (concat t u) : refl _)
-/
-- Length -- Length
-- ------ -- ------
definition length {n : } (v : vector T n) := n definition length (v : vector A n) :=
n
theorem length_nil : length (@nil T) = 0 := rfl theorem length_nil : length (@nil A) = 0 :=
rfl
-- theorem length_cons (x : T) (t : list T) : length (x :: t) = succ (length t) := rfl theorem length_cons (a : A) (v : vector A n) : length (a :: v) = succ (length v) :=
rfl
-- theorem length_concat (s t : list T) : length (s ++ t) = length s + length t := theorem length_append (v₁ : vector A n) (v₂ : vector A m) : length (append v₁ v₂) = length v₁ + length v₂ :=
-- list_induction_on s rfl
-- (calc
-- length (concat nil t) = length t : rfl
-- ... = zero + length t : {add_zero_left⁻¹}
-- ... = length (@nil T) + length t : rfl)
-- (take x s,
-- assume H : length (concat s t) = length s + length t,
-- calc
-- length (concat (cons x s) t ) = succ (length (concat s t)) : rfl
-- ... = succ (length s + length t) : { H }
-- ... = succ (length s) + length t : {add_succ_left⁻¹}
-- ... = length (cons x s) + length t : rfl)
-- -- add_rewrite length_nil length_cons -- Concat
-- -- Append
-- -- ------
-- definition append (x : T) : list T → list T := list_rec [x] (fun y l l', y :: l')
-- theorem append_nil (x : T) : append x nil = [x] := refl _
-- theorem append_cons (x : T) (y : T) (l : list T) : append x (y :: l) = y :: (append x l) := refl _
-- theorem append_eq_concat (x : T) (l : list T) : append x l = l ++ [x] := refl _
-- -- add_rewrite append_nil append_cons
-- -- Reverse
-- -- -------
-- definition reverse : list T → list T := list_rec nil (fun x l r, r ++ [x])
-- theorem reverse_nil : reverse (@nil T) = nil := refl _
-- theorem reverse_cons (x : T) (l : list T) : reverse (x :: l) = append x (reverse l) := refl _
-- theorem reverse_singleton (x : T) : reverse [x] = [x] := refl _
-- theorem reverse_concat (s t : list T) : reverse (s ++ t) = (reverse t) ++ (reverse s) :=
-- list_induction_on s (symm (concat_nil _))
-- (take x s,
-- assume IH : reverse (s ++ t) = concat (reverse t) (reverse s),
-- calc
-- reverse ((x :: s) ++ t) = reverse (s ++ t) ++ [x] : refl _
-- ... = reverse t ++ reverse s ++ [x] : {IH}
-- ... = reverse t ++ (reverse s ++ [x]) : concat_assoc _ _ _
-- ... = reverse t ++ (reverse (x :: s)) : refl _)
-- theorem reverse_reverse (l : list T) : reverse (reverse l) = l :=
-- list_induction_on l (refl _)
-- (take x l',
-- assume H: reverse (reverse l') = l',
-- show reverse (reverse (x :: l')) = x :: l', from
-- calc
-- reverse (reverse (x :: l')) = reverse (reverse l' ++ [x]) : refl _
-- ... = reverse [x] ++ reverse (reverse l') : reverse_concat _ _
-- ... = [x] ++ l' : { H }
-- ... = x :: l' : refl _)
-- theorem append_eq_reverse_cons (x : T) (l : list T) : append x l = reverse (x :: reverse l) :=
-- list_induction_on l (refl _)
-- (take y l',
-- assume H : append x l' = reverse (x :: reverse l'),
-- calc
-- append x (y :: l') = (y :: l') ++ [ x ] : append_eq_concat _ _
-- ... = concat (reverse (reverse (y :: l'))) [ x ] : {symm (reverse_reverse _)}
-- ... = reverse (x :: (reverse (y :: l'))) : refl _)
-- -- Head and tail
-- -- -------------
-- theorem head_concat (s t : list T) (x0 : T) : s ≠ nil → (head x0 (s ++ t) = head x0 s) :=
-- list_cases_on s
-- (take H : nil ≠ nil, absurd (refl nil) H)
-- (take x s,
-- take H : cons x s ≠ nil,
-- calc
-- head x0 (concat (cons x s) t) = head x0 (cons x (concat s t)) : {cons_concat _ _ _}
-- ... = x : {head_cons _ _ _}
-- ... = head x0 (cons x s) : {symm ( head_cons x x0 s)})
-- definition tail : list T → list T := list_rec nil (fun x l b, l)
-- theorem tail_nil : tail (@nil T) = nil := refl _
-- theorem tail_cons (x : T) (l : list T) : tail (cons x l) = l := refl _
-- theorem cons_head_tail (x0 : T) (l : list T) : l ≠ nil → (head x0 l) :: (tail l) = l :=
-- list_cases_on l
-- (assume H : nil ≠ nil, absurd (refl _) H)
-- (take x l, assume H : cons x l ≠ nil, refl _)
-- -- List membership
-- -- ---------------
-- definition mem (x : T) : list T → Prop := list_rec false (fun y l H, x = y H)
-- infix `∈` := mem
-- -- TODO: constructively, equality is stronger. Use that?
-- theorem mem_nil (x : T) : x ∈ nil ↔ false := iff_refl _
-- theorem mem_cons (x : T) (y : T) (l : list T) : mem x (cons y l) ↔ (x = y mem x l) := iff_refl _
-- theorem mem_concat_imp_or (x : T) (s t : list T) : x ∈ s ++ t → x ∈ s x ∈ t :=
-- list_induction_on s or_inr
-- (take y s,
-- assume IH : x ∈ s ++ t → x ∈ s x ∈ t,
-- assume H1 : x ∈ (y :: s) ++ t,
-- have H2 : x = y x ∈ s ++ t, from H1,
-- have H3 : x = y x ∈ s x ∈ t, from or_imp_or_right H2 IH,
-- iff_elim_right or_assoc H3)
-- theorem mem_or_imp_concat (x : T) (s t : list T) : x ∈ s x ∈ t → x ∈ s ++ t :=
-- list_induction_on s
-- (take H, or_elim H (false_elim _) (assume H, H))
-- (take y s,
-- assume IH : x ∈ s x ∈ t → x ∈ s ++ t,
-- assume H : x ∈ y :: s x ∈ t,
-- or_elim H
-- (assume H1,
-- or_elim H1
-- (take H2 : x = y, or_inl H2)
-- (take H2 : x ∈ s, or_inr (IH (or_inl H2))))
-- (assume H1 : x ∈ t, or_inr (IH (or_inr H1))))
-- theorem mem_concat (x : T) (s t : list T) : x ∈ s ++ t ↔ x ∈ s x ∈ t
-- := iff_intro (mem_concat_imp_or _ _ _) (mem_or_imp_concat _ _ _)
-- theorem mem_split (x : T) (l : list T) : x ∈ l → ∃s t : list T, l = s ++ (x :: t) :=
-- list_induction_on l
-- (take H : x ∈ nil, false_elim _ (iff_elim_left (mem_nil x) H))
-- (take y l,
-- assume IH : x ∈ l → ∃s t : list T, l = s ++ (x :: t),
-- assume H : x ∈ y :: l,
-- or_elim H
-- (assume H1 : x = y,
-- exists_intro nil
-- (exists_intro l (subst H1 (refl _))))
-- (assume H1 : x ∈ l,
-- obtain s (H2 : ∃t : list T, l = s ++ (x :: t)), from IH H1,
-- obtain t (H3 : l = s ++ (x :: t)), from H2,
-- have H4 : y :: l = (y :: s) ++ (x :: t),
-- from subst H3 (refl (y :: l)),
-- exists_intro _ (exists_intro _ H4)))
-- -- Find
-- ------ -- ------
definition concat (v : vector A n) (a : A) : vector A (succ n) :=
vector.rec_on v
(a :: nil)
(λ h n t r, h :: r)
-- -- to do this: need decidability of = for nat theorem concat_nil (a : A) : concat nil a = a :: nil :=
-- -- definition find (x : T) : list T → nat rfl
-- -- := list_rec 0 (fun y l b, if x = y then 0 else succ b)
-- -- theorem find_nil (f : T) : find f nil = 0 theorem last_concat (v : vector A n) (a : A) : last (concat v a) = a :=
-- -- :=refl _ vector.induction_on v
rfl
(λ h n t ih, calc
last (concat (h :: t) a) = last (concat t a) : rfl
... = a : ih)
-- -- theorem find_cons (x y : T) (l : list T) : find x (cons y l) =
-- -- if x = y then 0 else succ (find x l)
-- -- := refl _
-- -- theorem not_mem_find (l : list T) (x : T) : ¬ mem x l → find x l = length l
-- -- :=
-- -- @list_induction_on T (λl, ¬ mem x l → find x l = length l) l
-- -- -- list_induction_on l
-- -- (assume P1 : ¬ mem x nil,
-- -- show find x nil = length nil, from
-- -- calc
-- -- find x nil = 0 : find_nil _
-- -- ... = length nil : by simp)
-- -- (take y l,
-- -- assume IH : ¬ (mem x l) → find x l = length l,
-- -- assume P1 : ¬ (mem x (cons y l)),
-- -- have P2 : ¬ (mem x l (y = x)), from subst P1 (mem_cons _ _ _),
-- -- have P3 : ¬ (mem x l) ∧ (y ≠ x),from subst P2 (not_or _ _),
-- -- have P4 : x ≠ y, from ne_symm (and_elim_right P3),
-- -- calc
-- -- find x (cons y l) = succ (find x l) :
-- -- trans (find_cons _ _ _) (not_imp_if_eq P4 _ _)
-- -- ... = succ (length l) : {IH (and_elim_left P3)}
-- -- ... = length (cons y l) : symm (length_cons _ _))
-- -- nth element
-- -- -----------
-- definition nth (x0 : T) (l : list T) (n : ) : T :=
-- nat_rec (λl, head x0 l) (λm f l, f (tail l)) n l
-- theorem nth_zero (x0 : T) (l : list T) : nth x0 l 0 = head x0 l := refl _
-- theorem nth_succ (x0 : T) (l : list T) (n : ) : nth x0 l (succ n) = nth x0 (tail l) n := refl _
end sc_vector
notation a ++ b := concat a b
end vector end vector