refactor(kernel): remove unnecessary procedures
This commit is contained in:
parent
1bdf7ae55a
commit
b57f93bad5
6 changed files with 15 additions and 45 deletions
|
@ -14,41 +14,6 @@ Author: Leonardo de Moura
|
|||
#include "kernel/default_converter.h"
|
||||
|
||||
namespace lean {
|
||||
/**
|
||||
\brief Predicate for deciding whether \c d is an opaque definition or not.
|
||||
|
||||
Here is the basic idea:
|
||||
|
||||
1) Each definition has an opaque flag. This flag cannot be modified after a definition is added to the environment.
|
||||
The opaque flag affects the convertability check. The idea is to minimize the number of delta-reduction steps.
|
||||
We also believe it increases the modularity of Lean developments by minimizing the dependency on how things are defined.
|
||||
We should view non-opaque definitions as "inline definitions" used in programming languages such as C++.
|
||||
|
||||
2) To be able to prove theorems about an opaque definition, we treat an opaque definition D in a module M as
|
||||
transparent when we are type checking another definition/theorem D' also in M. This rule only applies if
|
||||
D is not a theorem, nor pred(D) is true. To implement this feature, this class has a field
|
||||
m_module_idx that is not none when this rule should be applied.
|
||||
*/
|
||||
bool is_opaque(declaration const & d, optional<module_idx> const & mod_idx) {
|
||||
lean_assert(d.is_definition());
|
||||
if (d.is_theorem()) return true; // theorems are always opaque
|
||||
if (!d.is_opaque()) return false; // d is a transparent definition
|
||||
if (mod_idx && d.get_module_idx() == *mod_idx) return false; // the opaque definitions in mod_idx are considered transparent
|
||||
return true; // d is opaque
|
||||
}
|
||||
|
||||
static optional<module_idx> * g_opt_main_module_idx = nullptr;
|
||||
|
||||
optional<declaration> is_delta(environment const & env, expr const & e) {
|
||||
expr const & f = get_app_fn(e);
|
||||
if (is_constant(f)) {
|
||||
if (auto d = env.find(const_name(f)))
|
||||
if (d->is_definition() && !is_opaque(*d, *g_opt_main_module_idx))
|
||||
return d;
|
||||
}
|
||||
return none_declaration();
|
||||
}
|
||||
|
||||
static no_delayed_justification * g_no_delayed_jst = nullptr;
|
||||
|
||||
pair<bool, constraint_seq> converter::is_def_eq(expr const & t, expr const & s, type_checker & c) {
|
||||
|
@ -72,6 +37,7 @@ struct dummy_converter : public converter {
|
|||
}
|
||||
virtual optional<module_idx> get_module_idx() const { return optional<module_idx>(); }
|
||||
virtual bool is_opaque(declaration const &) const { return false; }
|
||||
virtual optional<declaration> is_delta(expr const &) const { return optional<declaration>(); }
|
||||
};
|
||||
|
||||
std::unique_ptr<converter> mk_dummy_converter() {
|
||||
|
@ -79,12 +45,10 @@ std::unique_ptr<converter> mk_dummy_converter() {
|
|||
}
|
||||
|
||||
void initialize_converter() {
|
||||
g_opt_main_module_idx = new optional<module_idx>(g_main_module_idx);
|
||||
g_no_delayed_jst = new no_delayed_justification();
|
||||
}
|
||||
|
||||
void finalize_converter() {
|
||||
delete g_opt_main_module_idx;
|
||||
delete g_no_delayed_jst;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -22,15 +22,12 @@ public:
|
|||
virtual pair<bool, constraint_seq> is_def_eq(expr const & t, expr const & s, type_checker & c, delayed_justification & j) = 0;
|
||||
virtual optional<module_idx> get_module_idx() const = 0;
|
||||
virtual bool is_opaque(declaration const & d) const = 0;
|
||||
virtual optional<declaration> is_delta(expr const & e) const = 0;
|
||||
pair<bool, constraint_seq> is_def_eq(expr const & t, expr const & s, type_checker & c);
|
||||
};
|
||||
|
||||
std::unique_ptr<converter> mk_dummy_converter();
|
||||
|
||||
/** \brief Default procedure for deciding whether a declaration is opaque or not */
|
||||
bool is_opaque(declaration const & d, optional<module_idx> const & mod_idx);
|
||||
optional<declaration> is_delta(environment const & env, expr const & e);
|
||||
|
||||
void initialize_converter();
|
||||
void finalize_converter();
|
||||
}
|
||||
|
|
|
@ -108,7 +108,11 @@ expr default_converter::whnf_core(expr const & e) {
|
|||
}
|
||||
|
||||
bool default_converter::is_opaque(declaration const & d) const {
|
||||
return ::lean::is_opaque(d, m_module_idx);
|
||||
lean_assert(d.is_definition());
|
||||
if (d.is_theorem()) return true; // theorems are always opaque
|
||||
if (!d.is_opaque()) return false; // d is a transparent definition
|
||||
if (m_module_idx && d.get_module_idx() == *m_module_idx) return false; // the opaque definitions in mod_idx are considered transparent
|
||||
return true; // d is opaque
|
||||
}
|
||||
|
||||
/** \brief Expand \c e if it is non-opaque constant with weight >= w */
|
||||
|
@ -148,7 +152,7 @@ expr default_converter::unfold_names(expr const & e, unsigned w) {
|
|||
\brief Return some definition \c d iff \c e is a target for delta-reduction, and the given definition is the one
|
||||
to be expanded.
|
||||
*/
|
||||
optional<declaration> default_converter::is_delta(expr const & e) {
|
||||
optional<declaration> default_converter::is_delta(expr const & e) const {
|
||||
expr const & f = get_app_fn(e);
|
||||
if (is_constant(f)) {
|
||||
if (auto d = m_env.find(const_name(f)))
|
||||
|
|
|
@ -36,7 +36,6 @@ protected:
|
|||
expr whnf_core(expr const & e);
|
||||
expr unfold_name_core(expr e, unsigned w);
|
||||
expr unfold_names(expr const & e, unsigned w);
|
||||
optional<declaration> is_delta(expr const & e);
|
||||
expr whnf_core(expr e, unsigned w);
|
||||
|
||||
expr whnf(expr const & e_prime, constraint_seq & cs);
|
||||
|
@ -74,6 +73,7 @@ public:
|
|||
default_converter(environment const & env, optional<module_idx> mod_idx, bool memoize = true);
|
||||
default_converter(environment const & env, bool relax_main_opaque, bool memoize = true);
|
||||
|
||||
virtual optional<declaration> is_delta(expr const & e) const;
|
||||
virtual bool is_opaque(declaration const & d) const;
|
||||
virtual optional<module_idx> get_module_idx() const { return m_module_idx; }
|
||||
|
||||
|
|
|
@ -213,6 +213,8 @@ public:
|
|||
/** \brief Return a metavariable that may be stucking the \c e's reduction. */
|
||||
optional<expr> is_stuck(expr const & e);
|
||||
|
||||
optional<declaration> is_delta(expr const & e) const { return m_conv->is_delta(e); }
|
||||
|
||||
template<typename F>
|
||||
typename std::result_of<F()>::type with_params(level_param_names const & ps, F && f) {
|
||||
flet<level_param_names const *> updt(m_params, &ps);
|
||||
|
|
|
@ -775,7 +775,10 @@ struct unifier_fn {
|
|||
lean_unreachable(); // LCOV_EXCL_LINE
|
||||
}
|
||||
|
||||
optional<declaration> is_delta(expr const & e) { return ::lean::is_delta(m_env, e); }
|
||||
optional<declaration> is_delta(expr const & e) {
|
||||
bool relax_opaque = true;
|
||||
return m_tc[relax_opaque]->is_delta(e);
|
||||
}
|
||||
|
||||
/** \brief Return true if lhs and rhs are of the form (f ...) where f can be expanded */
|
||||
bool is_eq_deltas(expr const & lhs, expr const & rhs) {
|
||||
|
|
Loading…
Reference in a new issue