feat(library/algebra): modify categories to use definitions, prove basic theorems about discrete categories
This commit is contained in:
parent
811bc6a31f
commit
b62b4754cb
4 changed files with 88 additions and 139 deletions
|
@ -7,26 +7,11 @@ import .constructions
|
|||
open eq eq.ops category functor natural_transformation category.ops prod category.product
|
||||
|
||||
namespace adjoint
|
||||
--representable functor
|
||||
|
||||
definition foo (C : Category) : C ×c C ⇒ C ×c C := functor.id
|
||||
|
||||
-- definition Hom (C : Category) : Cᵒᵖ ×c C ⇒ type :=
|
||||
-- functor.mk (λ a, hom (pr1 a) (pr2 a))
|
||||
-- (λ a b f h, pr2 f ∘ h ∘ pr1 f)
|
||||
-- (λ a, funext (λh, !id_left ⬝ !id_right))
|
||||
-- (λ a b c g f, funext (λh,
|
||||
-- show (pr2 g ∘ pr2 f) ∘ h ∘ (pr1 f ∘ pr1 g) = pr2 g ∘ (pr2 f ∘ h ∘ pr1 f) ∘ pr1 g, from sorry))
|
||||
--I'm lazy, waiting for automation to fill this
|
||||
-- (λ a b f h, sorry)
|
||||
-- (λ a, sorry)
|
||||
-- (λ a b c g f, sorry)
|
||||
|
||||
variables (C D : Category)
|
||||
|
||||
-- private definition aux_prod_cat [instance] : category (obD × obD) := prod_category (opposite.opposite D) D
|
||||
|
||||
-- definition adjoint.{l} (F : C ⇒ D) (G : D ⇒ C) :=
|
||||
-- --@natural_transformation _ Type.{l} (Dᵒᵖ ×c D) type_category.{l+1} (Hom D) (Hom D)
|
||||
-- sorry
|
||||
--(@functor.compose _ _ _ _ _ _ (Hom D) (@product.prod_functor _ _ _ _ _ _ (Dᵒᵖ) D sorry sorry))
|
||||
--(Hom C ∘f sorry)
|
||||
--product.prod_functor (opposite.opposite_functor F) (functor.ID D)
|
||||
end adjoint
|
||||
|
|
|
@ -6,44 +6,25 @@ import logic.axioms.funext
|
|||
|
||||
open eq eq.ops
|
||||
|
||||
inductive category [class] (ob : Type) : Type :=
|
||||
mk : Π (hom : ob → ob → Type)
|
||||
(comp : Π⦃a b c : ob⦄, hom b c → hom a b → hom a c)
|
||||
(id : Π {a : ob}, hom a a),
|
||||
(Π ⦃a b c d : ob⦄ {h : hom c d} {g : hom b c} {f : hom a b},
|
||||
comp h (comp g f) = comp (comp h g) f) →
|
||||
(Π ⦃a b : ob⦄ {f : hom a b}, comp id f = f) →
|
||||
(Π ⦃a b : ob⦄ {f : hom a b}, comp f id = f) →
|
||||
category ob
|
||||
structure category [class] (ob : Type) : Type :=
|
||||
(hom : ob → ob → Type)
|
||||
(compose : Π⦃a b c : ob⦄, hom b c → hom a b → hom a c)
|
||||
(ID : Π (a : ob), hom a a)
|
||||
(assoc : Π ⦃a b c d : ob⦄ (h : hom c d) (g : hom b c) (f : hom a b),
|
||||
compose h (compose g f) = compose (compose h g) f)
|
||||
(id_left : Π ⦃a b : ob⦄ (f : hom a b), compose !ID f = f)
|
||||
(id_right : Π ⦃a b : ob⦄ (f : hom a b), compose f !ID = f)
|
||||
|
||||
namespace category
|
||||
variables {ob : Type} [C : category ob]
|
||||
variables {a b c d : ob}
|
||||
variables {a b c d : ob} {h : hom c d} {g : hom b c} {f : hom a b} {i : hom a a}
|
||||
include C
|
||||
|
||||
definition hom [reducible] : ob → ob → Type := rec (λ hom compose id assoc idr idl, hom) C
|
||||
-- note: needs to be reducible to typecheck composition in opposite category
|
||||
definition compose [reducible] : Π {a b c : ob}, hom b c → hom a b → hom a c :=
|
||||
rec (λ hom compose id assoc idr idl, compose) C
|
||||
|
||||
definition id [reducible] : Π {a : ob}, hom a a := rec (λ hom compose id assoc idr idl, id) C
|
||||
definition ID [reducible] (a : ob) : hom a a := id
|
||||
definition id [reducible] {a : ob} : hom a a := ID a
|
||||
|
||||
infixr `∘` := compose
|
||||
infixl `⟶`:25 := hom -- input ⟶ using \--> (this is a different arrow than \-> (→))
|
||||
|
||||
variables {h : hom c d} {g : hom b c} {f : hom a b} {i : hom a a}
|
||||
|
||||
theorem assoc : Π ⦃a b c d : ob⦄ (h : hom c d) (g : hom b c) (f : hom a b),
|
||||
h ∘ (g ∘ f) = (h ∘ g) ∘ f :=
|
||||
rec (λ hom comp id assoc idr idl, assoc) C
|
||||
|
||||
theorem id_left : Π ⦃a b : ob⦄ (f : hom a b), id ∘ f = f :=
|
||||
rec (λ hom comp id assoc idl idr, idl) C
|
||||
theorem id_right : Π ⦃a b : ob⦄ (f : hom a b), f ∘ id = f :=
|
||||
rec (λ hom comp id assoc idl idr, idr) C
|
||||
|
||||
--the following is the only theorem for which "include C" is necessary if C is a variable (why?)
|
||||
theorem id_compose (a : ob) : (ID a) ∘ id = id := !id_left
|
||||
|
||||
theorem left_id_unique (H : Π{b} {f : hom b a}, i ∘ f = f) : i = id :=
|
||||
|
@ -55,18 +36,15 @@ namespace category
|
|||
... = id : H
|
||||
end category
|
||||
|
||||
inductive Category : Type := mk : Π (ob : Type), category ob → Category
|
||||
structure Category : Type :=
|
||||
(objects : Type)
|
||||
(category_instance : category objects)
|
||||
|
||||
namespace category
|
||||
definition Mk {ob} (C) : Category := Category.mk ob C
|
||||
definition MK (a b c d e f g) : Category := Category.mk a (category.mk b c d e f g)
|
||||
|
||||
definition objects [coercion] [reducible] (C : Category) : Type
|
||||
:= Category.rec (fun c s, c) C
|
||||
|
||||
definition category_instance [instance] [coercion] [reducible] (C : Category) : category (objects C)
|
||||
:= Category.rec (fun c s, s) C
|
||||
|
||||
definition MK (o h c i a l r) : Category := Category.mk o (category.mk h c i a l r)
|
||||
definition objects [coercion] [reducible] := Category.objects
|
||||
definition category_instance [instance] [coercion] [reducible] := Category.category_instance
|
||||
end category
|
||||
|
||||
open category
|
||||
|
|
|
@ -12,7 +12,7 @@ open eq eq.ops prod
|
|||
namespace category
|
||||
namespace opposite
|
||||
section
|
||||
definition opposite {ob : Type} (C : category ob) : category ob :=
|
||||
definition opposite [reducible] {ob : Type} (C : category ob) : category ob :=
|
||||
mk (λa b, hom b a)
|
||||
(λ a b c f g, g ∘ f)
|
||||
(λ a, id)
|
||||
|
@ -20,7 +20,7 @@ namespace category
|
|||
(λ a b f, !id_right)
|
||||
(λ a b f, !id_left)
|
||||
|
||||
definition Opposite (C : Category) : Category := Mk (opposite C)
|
||||
definition Opposite [reducible] (C : Category) : Category := Mk (opposite C)
|
||||
--direct construction:
|
||||
-- MK C
|
||||
-- (λa b, hom b a)
|
||||
|
@ -45,7 +45,7 @@ namespace category
|
|||
end
|
||||
end opposite
|
||||
|
||||
definition type_category : category Type :=
|
||||
definition type_category [reducible] : category Type :=
|
||||
mk (λa b, a → b)
|
||||
(λ a b c, function.compose)
|
||||
(λ a, function.id)
|
||||
|
@ -53,15 +53,15 @@ namespace category
|
|||
(λ a b f, function.compose_id_left f)
|
||||
(λ a b f, function.compose_id_right f)
|
||||
|
||||
definition Type_category : Category := Mk type_category
|
||||
definition Type_category [reducible] : Category := Mk type_category
|
||||
|
||||
section
|
||||
open decidable unit empty
|
||||
variables {A : Type} [H : decidable_eq A]
|
||||
include H
|
||||
definition set_hom (a b : A) := decidable.rec_on (H a b) (λh, unit) (λh, empty)
|
||||
definition set_hom [reducible] (a b : A) := decidable.rec_on (H a b) (λh, unit) (λh, empty)
|
||||
theorem set_hom_subsingleton [instance] (a b : A) : subsingleton (set_hom a b) := _
|
||||
definition set_compose {a b c : A} (g : set_hom b c) (f : set_hom a b) : set_hom a c :=
|
||||
definition set_compose [reducible] {a b c : A} (g : set_hom b c) (f : set_hom a b) : set_hom a c :=
|
||||
decidable.rec_on
|
||||
(H b c)
|
||||
(λ Hbc g, decidable.rec_on
|
||||
|
@ -78,6 +78,21 @@ namespace category
|
|||
(λ a b f, @subsingleton.elim (set_hom a b) _ _ _)
|
||||
(λ a b f, @subsingleton.elim (set_hom a b) _ _ _)
|
||||
definition Discrete_category (A : Type) [H : decidable_eq A] := Mk (discrete_category A)
|
||||
context
|
||||
instance discrete_category
|
||||
include H
|
||||
theorem dicrete_category.endomorphism {a b : A} (f : a ⟶ b) : a = b :=
|
||||
decidable.rec_on (H a b) (λh f, h) (λh f, empty.rec _ f) f
|
||||
|
||||
theorem dicrete_category.discrete {a b : A} (f : a ⟶ b)
|
||||
: eq.rec_on (dicrete_category.endomorphism f) f = (ID b) :=
|
||||
@subsingleton.elim _ !set_hom_subsingleton _ _
|
||||
|
||||
definition discrete_category.rec_on {P : Πa b, a ⟶ b → Type} {a b : A} (f : a ⟶ b)
|
||||
(H : ∀a, P a a id) : P a b f :=
|
||||
cast (dcongr_arg3 P rfl (dicrete_category.endomorphism f⁻¹)
|
||||
(@subsingleton.elim _ !set_hom_subsingleton _ _) ⁻¹) (H a)
|
||||
end
|
||||
end
|
||||
section
|
||||
open unit bool
|
||||
|
@ -88,49 +103,49 @@ namespace category
|
|||
end
|
||||
|
||||
namespace product
|
||||
section
|
||||
open prod
|
||||
definition prod_category {obC obD : Type} (C : category obC) (D : category obD)
|
||||
: category (obC × obD) :=
|
||||
mk (λa b, hom (pr1 a) (pr1 b) × hom (pr2 a) (pr2 b))
|
||||
(λ a b c g f, (pr1 g ∘ pr1 f , pr2 g ∘ pr2 f) )
|
||||
(λ a, (id,id))
|
||||
(λ a b c d h g f, pair_eq !assoc !assoc )
|
||||
(λ a b f, prod.equal !id_left !id_left )
|
||||
(λ a b f, prod.equal !id_right !id_right)
|
||||
section
|
||||
open prod
|
||||
definition prod_category [reducible] {obC obD : Type} (C : category obC) (D : category obD)
|
||||
: category (obC × obD) :=
|
||||
mk (λa b, hom (pr1 a) (pr1 b) × hom (pr2 a) (pr2 b))
|
||||
(λ a b c g f, (pr1 g ∘ pr1 f , pr2 g ∘ pr2 f) )
|
||||
(λ a, (id,id))
|
||||
(λ a b c d h g f, pair_eq !assoc !assoc )
|
||||
(λ a b f, prod.equal !id_left !id_left )
|
||||
(λ a b f, prod.equal !id_right !id_right)
|
||||
|
||||
definition Prod_category (C D : Category) : Category := Mk (prod_category C D)
|
||||
|
||||
end
|
||||
definition Prod_category [reducible] (C D : Category) : Category := Mk (prod_category C D)
|
||||
end
|
||||
end product
|
||||
|
||||
namespace ops
|
||||
notation `type`:max := Type_category
|
||||
notation 1 := Category_one --it was confusing for me (Floris) that no ``s are needed here
|
||||
notation 1 := Category_one
|
||||
notation 2 := Category_two
|
||||
postfix `ᵒᵖ`:max := opposite.Opposite
|
||||
infixr `×c`:30 := product.Prod_category
|
||||
instance [persistent] type_category category_one
|
||||
instance [persistent] type_category category_one
|
||||
category_two product.prod_category
|
||||
end ops
|
||||
|
||||
open ops
|
||||
namespace opposite
|
||||
section
|
||||
open ops functor
|
||||
definition opposite_functor {C D : Category} (F : C ⇒ D) : Cᵒᵖ ⇒ Dᵒᵖ :=
|
||||
open functor
|
||||
definition opposite_functor [reducible] {C D : Category} (F : C ⇒ D) : Cᵒᵖ ⇒ Dᵒᵖ :=
|
||||
@functor.mk (Cᵒᵖ) (Dᵒᵖ)
|
||||
(λ a, F a)
|
||||
(λ a b f, F f)
|
||||
(λ a, !respect_id)
|
||||
(λ a b c g f, !respect_comp)
|
||||
(λ a, respect_id F a)
|
||||
(λ a b c g f, respect_comp F f g)
|
||||
end
|
||||
end opposite
|
||||
|
||||
namespace product
|
||||
section
|
||||
open ops functor
|
||||
definition prod_functor {C C' D D' : Category} (F : C ⇒ D) (G : C' ⇒ D') : C ×c C' ⇒ D ×c D' :=
|
||||
definition prod_functor [reducible] {C C' D D' : Category} (F : C ⇒ D) (G : C' ⇒ D')
|
||||
: C ×c C' ⇒ D ×c D' :=
|
||||
functor.mk (λ a, pair (F (pr1 a)) (G (pr2 a)))
|
||||
(λ a b f, pair (F (pr1 f)) (G (pr2 f)))
|
||||
(λ a, pair_eq !respect_id !respect_id)
|
||||
|
@ -162,7 +177,7 @@ namespace category
|
|||
protected definition to_ob (a : slice_obs C c) : ob := dpr1 a
|
||||
protected definition to_ob_def (a : slice_obs C c) : to_ob a = dpr1 a := rfl
|
||||
protected definition ob_hom (a : slice_obs C c) : hom (to_ob a) c := dpr2 a
|
||||
-- protected theorem slice_obs_equal (H₁ : to_ob a = to_ob b)
|
||||
-- protected theorem slice_obs_equal (H₁ : to_ob a = to_ob b)
|
||||
-- (H₂ : eq.drec_on H₁ (ob_hom a) = ob_hom b) : a = b :=
|
||||
-- sigma.equal H₁ H₂
|
||||
|
||||
|
@ -191,7 +206,7 @@ namespace category
|
|||
(λ a b f, sigma.equal !id_right !proof_irrel)
|
||||
-- We use !proof_irrel instead of rfl, to give the unifier an easier time
|
||||
|
||||
-- definition slice_category {ob : Type} (C : category ob) (c : ob) : category (Σ(b : ob), hom b c)
|
||||
-- definition slice_category {ob : Type} (C : category ob) (c : ob) : category (Σ(b : ob), hom b c)
|
||||
-- :=
|
||||
-- mk (λa b, Σ(g : hom (dpr1 a) (dpr1 b)), dpr2 b ∘ g = dpr2 a)
|
||||
-- (λ a b c g f, dpair (dpr1 g ∘ dpr1 f)
|
||||
|
@ -218,7 +233,7 @@ namespace category
|
|||
(λ a, rfl)
|
||||
(λ a b c g f, rfl)
|
||||
|
||||
definition postcomposition_functor {x y : D} (h : x ⟶ y)
|
||||
definition postcomposition_functor {x y : D} (h : x ⟶ y)
|
||||
: Slice_category D x ⇒ Slice_category D y :=
|
||||
functor.mk (λ a, dpair (to_ob a) (h ∘ ob_hom a))
|
||||
(λ a b f, dpair (hom_hom f)
|
||||
|
@ -232,9 +247,9 @@ namespace category
|
|||
-- definition heq2 {A B : Type} (H : A = B) (a : A) (b : B) := a == b
|
||||
-- definition heq2.intro {A B : Type} {a : A} {b : B} (H : a == b) : heq2 (heq.type_eq H) a b := H
|
||||
-- definition heq2.elim {A B : Type} {a : A} {b : B} (H : A = B) (H2 : heq2 H a b) : a == b := H2
|
||||
-- definition heq2.proof_irrel {A B : Prop} (a : A) (b : B) (H : A = B) : heq2 H a b :=
|
||||
-- definition heq2.proof_irrel {A B : Prop} (a : A) (b : B) (H : A = B) : heq2 H a b :=
|
||||
-- hproof_irrel H a b
|
||||
-- theorem functor.mk_eq2 {C D : Category} {obF obG : C → D} {homF homG idF idG compF compG}
|
||||
-- theorem functor.mk_eq2 {C D : Category} {obF obG : C → D} {homF homG idF idG compF compG}
|
||||
-- (Hob : ∀x, obF x = obG x)
|
||||
-- (Hmor : ∀(a b : C) (f : a ⟶ b), heq2 (congr_arg (λ x, x a ⟶ x b) (funext Hob)) (homF a b f) (homG a b f))
|
||||
-- : functor.mk obF homF idF compF = functor.mk obG homG idG compG :=
|
||||
|
@ -345,8 +360,7 @@ namespace category
|
|||
|
||||
end category
|
||||
|
||||
-- definition foo
|
||||
-- : category (sorry) :=
|
||||
-- definition foo : category (sorry) :=
|
||||
-- mk (λa b, sorry)
|
||||
-- (λ a b c g f, sorry)
|
||||
-- (λ a, sorry)
|
||||
|
|
|
@ -7,48 +7,43 @@ import logic.cast
|
|||
open function
|
||||
open category eq eq.ops heq
|
||||
|
||||
inductive functor (C D : Category) : Type :=
|
||||
mk : Π (obF : C → D) (homF : Π(a b : C), hom a b → hom (obF a) (obF b)),
|
||||
(Π (a : C), homF a a (ID a) = ID (obF a)) →
|
||||
(Π (a b c : C) {g : hom b c} {f : hom a b}, homF a c (g ∘ f) = homF b c g ∘ homF a b f) →
|
||||
functor C D
|
||||
structure functor (C D : Category) : Type :=
|
||||
(object : C → D)
|
||||
(morphism : Π⦃a b : C⦄, hom a b → hom (object a) (object b))
|
||||
(respect_id : Π (a : C), morphism (ID a) = ID (object a))
|
||||
(respect_comp : Π ⦃a b c : C⦄ (g : hom b c) (f : hom a b),
|
||||
morphism (g ∘ f) = morphism g ∘ morphism f)
|
||||
|
||||
infixl `⇒`:25 := functor
|
||||
|
||||
namespace functor
|
||||
variables {C D E : Category}
|
||||
definition object [coercion] (F : functor C D) : C → D := rec (λ obF homF Hid Hcomp, obF) F
|
||||
coercion [persistent] object
|
||||
coercion [persistent] morphism
|
||||
irreducible [persistent] respect_id respect_comp
|
||||
|
||||
definition morphism [coercion] (F : functor C D) : Π⦃a b : C⦄, hom a b → hom (F a) (F b) :=
|
||||
rec (λ obF homF Hid Hcomp, homF) F
|
||||
variables {A B C D : Category}
|
||||
|
||||
theorem respect_id (F : functor C D) : Π (a : C), F (ID a) = id :=
|
||||
rec (λ obF homF Hid Hcomp, Hid) F
|
||||
|
||||
theorem respect_comp (F : functor C D) : Π ⦃a b c : C⦄ (g : hom b c) (f : hom a b),
|
||||
F (g ∘ f) = F g ∘ F f :=
|
||||
rec (λ obF homF Hid Hcomp, Hcomp) F
|
||||
|
||||
protected definition compose (G : functor D E) (F : functor C D) : functor C E :=
|
||||
protected definition compose [reducible] (G : functor B C) (F : functor A B) : functor A C :=
|
||||
functor.mk
|
||||
(λx, G (F x))
|
||||
(λ a b f, G (F f))
|
||||
(λ a, calc
|
||||
G (F (ID a)) = G id : {respect_id F a} --not giving the braces explicitly makes the elaborator compute a couple more seconds
|
||||
... = id : respect_id G (F a))
|
||||
(λ a b c g f, calc
|
||||
(λ a, proof calc
|
||||
G (F (ID a)) = G id : {respect_id F a}
|
||||
--not giving the braces explicitly makes the elaborator compute a couple more seconds
|
||||
... = id : respect_id G (F a) qed)
|
||||
(λ a b c g f, proof calc
|
||||
G (F (g ∘ f)) = G (F g ∘ F f) : respect_comp F g f
|
||||
... = G (F g) ∘ G (F f) : respect_comp G (F g) (F f))
|
||||
... = G (F g) ∘ G (F f) : respect_comp G (F g) (F f) qed)
|
||||
|
||||
infixr `∘f`:60 := compose
|
||||
|
||||
protected theorem assoc {A B C D : Category} (H : functor C D) (G : functor B C) (F : functor A B) :
|
||||
protected theorem assoc (H : functor C D) (G : functor B C) (F : functor A B) :
|
||||
H ∘f (G ∘f F) = (H ∘f G) ∘f F :=
|
||||
rfl
|
||||
|
||||
protected definition id {C : Category} : functor C C :=
|
||||
protected definition id [reducible] {C : Category} : functor C C :=
|
||||
mk (λa, a) (λ a b f, f) (λ a, rfl) (λ a b c f g, rfl)
|
||||
protected definition ID (C : Category) : functor C C := id
|
||||
protected definition ID [reducible] (C : Category) : functor C C := id
|
||||
|
||||
protected theorem id_left (F : functor C D) : id ∘f F = F :=
|
||||
functor.rec (λ obF homF idF compF, dcongr_arg4 mk rfl rfl !proof_irrel !proof_irrel) F
|
||||
|
@ -66,6 +61,7 @@ namespace category
|
|||
(λ a b c d h g f, !functor.assoc)
|
||||
(λ a b f, !functor.id_left)
|
||||
(λ a b f, !functor.id_right)
|
||||
|
||||
definition Category_of_categories [reducible] := Mk category_of_categories
|
||||
|
||||
namespace ops
|
||||
|
@ -75,32 +71,8 @@ namespace category
|
|||
end category
|
||||
|
||||
namespace functor
|
||||
-- open category.ops
|
||||
-- universes l m
|
||||
|
||||
variables {C D : Category}
|
||||
-- check hom C D
|
||||
-- variables (F : C ⟶ D) (G : D ⇒ C)
|
||||
-- check G ∘ F
|
||||
-- check F ∘f G
|
||||
-- variables (a b : C) (f : a ⟶ b)
|
||||
-- check F a
|
||||
-- check F b
|
||||
-- check F f
|
||||
-- check G (F f)
|
||||
-- print "---"
|
||||
-- -- check (G ∘ F) f --error
|
||||
-- check (λ(x : functor C C), x) (G ∘ F) f
|
||||
-- check (G ∘f F) f
|
||||
-- print "---"
|
||||
-- -- check (G ∘ F) a --error
|
||||
-- check (G ∘f F) a
|
||||
-- print "---"
|
||||
-- -- check λ(H : hom C D) (x : C), H x --error
|
||||
-- check λ(H : @hom _ Cat C D) (x : C), H x
|
||||
-- check λ(H : C ⇒ D) (x : C), H x
|
||||
-- print "---"
|
||||
-- -- variables {obF obG : C → D} (Hob : ∀x, obF x = obG x) (homF : Π(a b : C) (f : a ⟶ b), obF a ⟶ obF b) (homG : Π(a b : C) (f : a ⟶ b), obG a ⟶ obG b)
|
||||
-- -- check eq.rec_on (funext Hob) homF = homG
|
||||
|
||||
theorem mk_heq {obF obG : C → D} {homF homG idF idG compF compG} (Hob : ∀x, obF x = obG x)
|
||||
(Hmor : ∀(a b : C) (f : a ⟶ b), homF a b f == homG a b f)
|
||||
|
|
Loading…
Reference in a new issue