feat(library/blast/simplifier): rewrite with tmp locals
This commit is contained in:
parent
3f331a261a
commit
b727d5810a
7 changed files with 92 additions and 49 deletions
|
@ -98,6 +98,7 @@ class simplifier {
|
|||
name m_rel;
|
||||
|
||||
list<expr> m_local_ctx;
|
||||
simp_rule_sets m_ctx_srss;
|
||||
|
||||
/* Logging */
|
||||
unsigned m_num_steps{0};
|
||||
|
@ -129,6 +130,17 @@ class simplifier {
|
|||
return has_free_vars(binding_body(f_type));
|
||||
}
|
||||
|
||||
simp_rule_sets add_to_srss(simp_rule_sets const & _srss, buffer<expr> & ls) {
|
||||
simp_rule_sets srss = _srss;
|
||||
for (unsigned i = 0; i < ls.size(); i++) {
|
||||
// TODO assert no metas?
|
||||
expr & l = ls[i];
|
||||
tmp_type_context tctx(env(),ios());
|
||||
srss = add(tctx,srss,mlocal_name(l),tctx.infer(l),l);
|
||||
}
|
||||
return srss;
|
||||
}
|
||||
|
||||
/* Results */
|
||||
result lift_from_eq(expr const & x, result const & r);
|
||||
result join(result const & r1, result const & r2);
|
||||
|
@ -144,8 +156,8 @@ class simplifier {
|
|||
|
||||
/* Rewriting */
|
||||
result rewrite(expr const & e);
|
||||
result rewrite(expr const & e, simp_rule_sets const & srss);
|
||||
result rewrite(expr const & e, simp_rule const & sr);
|
||||
void init_tmp_tctx_for(simp_rule_core const & sr);
|
||||
|
||||
/* Congruence */
|
||||
result congr(result const & r_f, result const & r_arg);
|
||||
|
@ -168,6 +180,7 @@ simplifier::simplifier(branch const & b, name const & rel):
|
|||
m_app_builder(*m_tmp_tctx), m_branch(b), m_rel(rel) { }
|
||||
|
||||
/* Cache */
|
||||
|
||||
optional<result> simplifier::cache_lookup(expr const & e) {
|
||||
simplify_cache & cache = m_simplify_caches[m_rel];
|
||||
auto it = cache.find(e);
|
||||
|
@ -179,7 +192,6 @@ void simplifier::cache_save(expr const & e, result const & r) {
|
|||
cache.insert(mk_pair(e,r));
|
||||
}
|
||||
|
||||
|
||||
/* Results */
|
||||
|
||||
result simplifier::lift_from_eq(expr const & x, result const & r) {
|
||||
|
@ -375,29 +387,29 @@ result simplifier::simplify_fun(expr const & e) {
|
|||
|
||||
result simplifier::rewrite(expr const & e) {
|
||||
result r(e);
|
||||
while (true) {
|
||||
result r_ctx = rewrite(r.get_new(),m_ctx_srss);
|
||||
result r_new = rewrite(r_ctx.get_new(),get_simp_rule_sets(env()));
|
||||
if (r_ctx.is_none() && r_new.is_none()) break;
|
||||
r = join(join(r,r_ctx),r_new);
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
/* First, we rewrite with local hypotheses */
|
||||
//TODO
|
||||
result simplifier::rewrite(expr const & e, simp_rule_sets const & srss) {
|
||||
result r(e);
|
||||
|
||||
/* Next, we rewrite with the [simp_rule_set] */
|
||||
simp_rule_set const * sr = get_simp_rule_sets(env()).find(m_rel);
|
||||
simp_rule_set const * sr = srss.find(m_rel);
|
||||
if (!sr) return r;
|
||||
|
||||
list<simp_rule> const * srs = sr->find_simp(e);
|
||||
if (!srs) return r;
|
||||
|
||||
bool modified = true;
|
||||
while (modified) {
|
||||
modified = false;
|
||||
for_each(*srs,[&](simp_rule const & sr) {
|
||||
result r_rew = rewrite(r.get_new(),sr);
|
||||
if (r_rew.is_none()) return;
|
||||
r = join(r,r_rew);
|
||||
modified = true;
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
result r_new = rewrite(r.get_new(),sr);
|
||||
if (r_new.is_none()) return;
|
||||
r = join(r,r_new);
|
||||
});
|
||||
return r;
|
||||
}
|
||||
|
||||
|
@ -407,10 +419,12 @@ result simplifier::rewrite(expr const & e, simp_rule const & sr) {
|
|||
if (!tmp_tctx->is_def_eq(e,sr.get_lhs())) return result(e);
|
||||
|
||||
if (m_trace) {
|
||||
ios().get_diagnostic_channel() << "[" << sr.get_id() << "]\n";
|
||||
expr new_lhs = tmp_tctx->instantiate_uvars_mvars(sr.get_lhs());
|
||||
expr new_rhs = tmp_tctx->instantiate_uvars_mvars(sr.get_rhs());
|
||||
ios().get_diagnostic_channel() << "[" << sr.get_lhs() << " =?= " << sr.get_rhs() << "] ==> ";
|
||||
ios().get_diagnostic_channel() << "[" << new_lhs << " =?= " << new_rhs << "]\n";
|
||||
}
|
||||
|
||||
|
||||
/* Traverse metavariables backwards */
|
||||
for (int i = sr.get_num_emeta() - 1; i >= 0; --i) {
|
||||
expr const & m = sr.get_emeta(i);
|
||||
|
@ -428,11 +442,18 @@ result simplifier::rewrite(expr const & e, simp_rule const & sr) {
|
|||
|
||||
if (tmp_tctx->is_mvar_assigned(i)) continue;
|
||||
|
||||
// TODO REMOVE DEBUG
|
||||
expr m_assigned = tmp_tctx->instantiate_uvars_mvars(m);
|
||||
|
||||
if (tmp_tctx->is_prop(tmp_tctx->infer(m))) {
|
||||
// TODO try to prove
|
||||
return result(e);
|
||||
}
|
||||
|
||||
if (m_trace) {
|
||||
ios().get_diagnostic_channel() << "failed to assign: " << m << "\n";
|
||||
}
|
||||
|
||||
/* We fail if there is a meta variable that we still cannot assign */
|
||||
return result(e);
|
||||
}
|
||||
|
@ -516,7 +537,8 @@ result simplifier::try_congr(expr const & e, congr_rule const & cr) {
|
|||
if (!tmp_tctx->is_def_eq(e,cr.get_lhs())) return result(e);
|
||||
|
||||
if (m_trace) {
|
||||
ios().get_diagnostic_channel() << "<" << cr.get_id() << ">\n";
|
||||
ios().get_diagnostic_channel() << "<" << cr.get_id() << "> "
|
||||
<< e << " === " << cr.get_lhs() << "\n";
|
||||
}
|
||||
|
||||
/* First, iterate over the congruence hypotheses */
|
||||
|
@ -531,7 +553,7 @@ result simplifier::try_congr(expr const & e, congr_rule const & cr) {
|
|||
while (is_pi(m_type)) {
|
||||
expr d = instantiate_rev(binding_domain(m_type), ls.size(), ls.data());
|
||||
expr l = tmp_tctx->mk_tmp_local(d,binding_info(e));
|
||||
ls.push_back(tmp_tctx->instantiate_uvars_mvars(l));
|
||||
ls.push_back(l);
|
||||
m_type = instantiate(binding_body(m_type),l);
|
||||
}
|
||||
|
||||
|
@ -539,10 +561,14 @@ result simplifier::try_congr(expr const & e, congr_rule const & cr) {
|
|||
bool valid = is_simp_relation(env(), m_type, h_rel, h_lhs, h_rhs) && is_constant(h_rel);
|
||||
lean_assert(valid);
|
||||
{
|
||||
flet<name> set_name(m_rel,const_name(h_rel));
|
||||
flet<list<expr> > set_local_ctx(m_local_ctx,append(m_local_ctx,to_list(ls)));
|
||||
simplify_caches fresh_caches;
|
||||
flet<simplify_caches> set_simplify_caches(m_simplify_caches,fresh_caches);
|
||||
flet<name> set_name(m_rel,const_name(h_rel));
|
||||
|
||||
buffer<expr> ls_instantiated;
|
||||
for (unsigned i = 0; i < ls.size(); i++) ls_instantiated.push_back(tmp_tctx->instantiate_uvars_mvars(ls[i]));
|
||||
|
||||
flet<simp_rule_sets> set_ctx_srss(m_ctx_srss,add_to_srss(m_ctx_srss,ls_instantiated));
|
||||
|
||||
h_lhs = tmp_tctx->instantiate_uvars_mvars(h_lhs);
|
||||
result r_congr_hyp = simplify(h_lhs);
|
||||
|
@ -554,11 +580,14 @@ result simplifier::try_congr(expr const & e, congr_rule const & cr) {
|
|||
hyp = r_congr_hyp.get_proof();
|
||||
simplified = true;
|
||||
}
|
||||
hyp = Fun(ls,hyp);
|
||||
|
||||
hyp = Fun(ls_instantiated,hyp);
|
||||
if (!tmp_tctx->is_def_eq(m,hyp)) failed = true;
|
||||
}
|
||||
});
|
||||
|
||||
if (failed || !simplified) return result(e);
|
||||
|
||||
/* Traverse metavariables backwards, proving or synthesizing the rest */
|
||||
for (int i = cr.get_num_emeta() - 1; i >= 0; --i) {
|
||||
expr const & m = cr.get_emeta(i);
|
||||
|
@ -581,6 +610,11 @@ result simplifier::try_congr(expr const & e, congr_rule const & cr) {
|
|||
return result(e);
|
||||
}
|
||||
|
||||
if (m_trace) {
|
||||
ios().get_diagnostic_channel() << "failed to assign: " << tmp_tctx->instantiate_uvars_mvars(m) << " : "
|
||||
<< tmp_tctx->instantiate_uvars_mvars(tmp_tctx->infer(m)) << "\n";
|
||||
}
|
||||
|
||||
/* We fail if there is a meta variable that we still cannot assign */
|
||||
return result(e);
|
||||
}
|
||||
|
|
|
@ -4,13 +4,7 @@ constant T : Type.{l}
|
|||
constants (x y z : T) (f g h : T → T)
|
||||
constants (Hfxgy : f x = g y) (Hgyhz : g y = h z)
|
||||
|
||||
#simplify eq 2 (f x) -- f x
|
||||
|
||||
attribute Hfxgy [simp]
|
||||
#simplify eq 2 (f x)
|
||||
attribute Hgyhz [simp]
|
||||
|
||||
set_option simplify.exhaustive false
|
||||
#simplify eq 2 (f x) -- g y
|
||||
|
||||
set_option simplify.exhaustive true
|
||||
#simplify eq 2 (f x) -- h z
|
||||
#simplify eq 2 (f x)
|
||||
|
|
|
@ -1,3 +1,2 @@
|
|||
<refl>
|
||||
f x = g y
|
||||
f x = h z
|
||||
|
|
|
@ -5,11 +5,7 @@ constants (x y z : T) (f g h : T → T)
|
|||
constants (Hfxgy : f x = g y) (Hgyhz : g y = h z)
|
||||
|
||||
attribute Hfxgy [simp]
|
||||
attribute Hgyhz [simp]
|
||||
|
||||
set_option simplify.exhaustive false
|
||||
#simplify eq 0 (λ a b c : bool, f x) -- λ (a b c : bool), g y
|
||||
|
||||
set_option simplify.exhaustive true
|
||||
attribute Hgyhz [simp]
|
||||
#simplify eq 0 (λ a b c : bool, f x) -- λ (a b c : bool), h z
|
||||
|
||||
|
|
|
@ -7,17 +7,12 @@ constant T : Type.{l}
|
|||
constants (x y z : T → T) (f g h : (T → T) → (T → T)) (a b c : T)
|
||||
constants (Hfxgy : f x = g y) (Hgyhz : g y = h z) (Hab : a = b) (Hbc : b = c)
|
||||
|
||||
#simplify eq 2 (f x a) -- f x a
|
||||
|
||||
attribute Hfxgy [simp]
|
||||
attribute Hgyhz [simp]
|
||||
attribute Hab [simp]
|
||||
attribute Hbc [simp]
|
||||
|
||||
set_option simplify.exhaustive false
|
||||
#simplify eq 2 (f x a) -- g y b
|
||||
|
||||
set_option simplify.exhaustive true
|
||||
#simplify eq 2 (f x a) -- h z c
|
||||
|
||||
end test_congr
|
||||
|
|
|
@ -1,4 +1,2 @@
|
|||
<refl>
|
||||
f x a = g y b
|
||||
f x a = h z c
|
||||
f x = g x
|
||||
|
|
27
tests/lean/simplifier9.lean
Normal file
27
tests/lean/simplifier9.lean
Normal file
|
@ -0,0 +1,27 @@
|
|||
-- Rewriting with (tmp)-local hypotheses
|
||||
import logic.quantifiers
|
||||
|
||||
universe l
|
||||
constants (T : Type.{l}) (P Q : T → Prop)
|
||||
|
||||
set_option simplify.max_steps 50000
|
||||
constants (x y : T)
|
||||
|
||||
#simplify iff 0 x = y → x = y
|
||||
#simplify iff 0 T → x = y → x = y
|
||||
#simplify iff 0 ∀ z : T, x = z → x = y
|
||||
#simplify iff 0 ∀ z : T, z = x → x = z
|
||||
#simplify iff 0 ∀ (z w : T), x = y → x = y
|
||||
#simplify iff 0 ∀ (z w : T), x = y → P x
|
||||
|
||||
#simplify iff 0 ∀ (H : ∀ x, P x ↔ Q x), P x
|
||||
#simplify iff 0 ∀ (p : Prop) (H : ∀ x, P x ↔ Q x) (q : Prop), P x
|
||||
|
||||
#simplify iff 0 ∀ (p : Prop) (H : ∀ x, P x ↔ Q x), p ∨ P x
|
||||
#simplify iff 0 (∀ (x : T), P x ↔ Q x) → P x
|
||||
#simplify iff 0 (∀ (x : T), P x ↔ Q x) → P x
|
||||
#simplify iff 0 ∀ (x y : T), (∀ (x : T), P x ↔ Q x) → P x
|
||||
|
||||
#simplify iff 0 ∀ (x z : T), x = z → (∀ (w : T), P w ↔ Q w) → P x
|
||||
|
||||
|
Loading…
Reference in a new issue