feat(library/data/sigma/wf): define 'lex' for 'sigma' types and prove wf theorem

This commit is contained in:
Leonardo de Moura 2014-11-16 20:08:52 -08:00
parent dd0b1ecdbf
commit b7725c2949

View file

@ -0,0 +1,65 @@
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Leonardo de Moura
import data.sigma.decl logic.wf logic.cast
open well_founded
namespace sigma
section
variables {A : Type} {B : A → Type}
variable (Ra : A → A → Prop)
variable (Rb : ∀ a, B a → B a → Prop)
-- Lexicographical order based on Ra and Rb
inductive lex : sigma B → sigma B → Prop :=
left : ∀{a₁ b₁} a₂ b₂, Ra a₁ a₂ → lex (dpair a₁ b₁) (dpair a₂ b₂),
right : ∀a {b₁ b₂}, Rb a b₁ b₂ → lex (dpair a b₁) (dpair a b₂)
end
context
parameters {A : Type} {B : A → Type}
parameters {Ra : A → A → Prop} {Rb : Π a : A, B a → B a → Prop}
infix `≺`:50 := lex Ra Rb
set_option pp.beta true
definition lex.accessible {a} (aca : acc Ra a) (acb : ∀a, well_founded (Rb a)) : ∀ (b : B a), acc (lex Ra Rb) (dpair a b) :=
acc.rec_on aca
(λxa aca (iHa : ∀y, Ra y xa → ∀b : B y, acc (lex Ra Rb) (dpair y b)),
λb : B xa, acc.rec_on (acb xa b)
(λxb acb
(iHb : ∀y, Rb xa y xb → acc (lex Ra Rb) (dpair xa y)),
acc.intro (dpair xa xb) (λp (lt : p ≺ (dpair xa xb)),
have aux : xa = xa → xb == xb → acc (lex Ra Rb) p, from
@lex.rec_on A B Ra Rb (λp₁ p₂, dpr1 p₂ = xa → dpr2 p₂ == xb → acc (lex Ra Rb) p₁)
p (dpair xa xb) lt
(λa₁ b₁ a₂ b₂ (H : Ra a₁ a₂) (eq₂ : a₂ = xa) (eq₃ : b₂ == xb),
show acc (lex Ra Rb) (dpair a₁ b₁), from
have Ra₁ : Ra a₁ xa, from eq.rec_on eq₂ H,
iHa a₁ Ra₁ b₁)
(λa b₁ b₂ (H : Rb a b₁ b₂) (eq₂ : a = xa) (eq₃ : b₂ == xb),
-- TODO(Leo): cleanup this proof
show acc (lex Ra Rb) (dpair a b₁), from
let b₁' : B xa := eq.rec_on eq₂ b₁ in
have aux₁ : b₁ == b₁', from
heq.symm (eq_rec_heq eq₂ b₁),
have aux₂ : Rb a b₁ b₂ = Rb xa b₁' xb, from
heq.to_eq (hcongr_arg3 Rb eq₂ aux₁ eq₃),
have aux₃ : Rb xa b₁' xb, from
eq.rec_on aux₂ H,
have aux₄ : acc (lex Ra Rb) (dpair xa b₁'), from
iHb b₁' aux₃,
have aux₅ : ∀ (b₁ b₂ : B a) (H₁ : a = a) (H₂ : b₁ == b₂), acc (lex Ra Rb) (dpair a b₁) → acc (lex Ra Rb) (dpair a b₂), from
λ b₁ b₂ H₁ H₂ Ha, eq.rec_on (heq.to_eq H₂) Ha,
have aux₆ : ∀ (b₁ : B xa) (b₂ : B a) (H₁ : a = xa) (H₂ : b₁ == b₂), acc (lex Ra Rb) (dpair xa b₁) → acc (lex Ra Rb) (dpair a b₂), from
eq.rec_on eq₂ aux₅,
aux₆ b₁' b₁ eq₂ (heq.symm aux₁) aux₄),
aux rfl !heq.refl)))
-- The lexicographical order of well founded relations is well-founded
definition lex.wf (Ha : well_founded Ra) (Hb : ∀ x, well_founded (Rb x)) : well_founded (lex Ra Rb) :=
well_founded.intro (λp, destruct p (λa b, lex.accessible (Ha a) Hb b))
end
end sigma