feat(library/tactic/apply_tactic): modify heuristic for adding arguments to apply tactic.
This commit is contained in:
parent
f9aa1a1b84
commit
b83b065d00
5 changed files with 17 additions and 12 deletions
|
@ -70,11 +70,12 @@ static proof_state_seq apply_tactic_core(environment const & env, io_state const
|
||||||
expr e_t = e_t_cs.first;
|
expr e_t = e_t_cs.first;
|
||||||
buffer<expr> metas;
|
buffer<expr> metas;
|
||||||
if (add_meta) {
|
if (add_meta) {
|
||||||
unsigned num_t = get_expect_num_args(*tc, t);
|
// unsigned num_t = get_expect_num_args(*tc, t);
|
||||||
unsigned num_e_t = get_expect_num_args(*tc, e_t);
|
unsigned num_e_t = get_expect_num_args(*tc, e_t);
|
||||||
if (num_t > num_e_t)
|
// Remark: we used to add (num_e_t - num_t) arguments.
|
||||||
return proof_state_seq(); // no hope to unify then
|
// This would allow us to handle (A -> B) without using intros,
|
||||||
for (unsigned i = 0; i < num_e_t - num_t; i++) {
|
// but it was preventing us from solving other problems
|
||||||
|
for (unsigned i = 0; i < num_e_t; i++) {
|
||||||
auto e_t_cs = tc->whnf(e_t);
|
auto e_t_cs = tc->whnf(e_t);
|
||||||
e_t_cs.second.linearize(cs);
|
e_t_cs.second.linearize(cs);
|
||||||
e_t = e_t_cs.first;
|
e_t = e_t_cs.first;
|
||||||
|
|
|
@ -2,7 +2,9 @@ import logic
|
||||||
|
|
||||||
theorem tst (a b : Prop) (H : a ↔ b) : b ↔ a
|
theorem tst (a b : Prop) (H : a ↔ b) : b ↔ a
|
||||||
:= by rapply iff.intro;
|
:= by rapply iff.intro;
|
||||||
apply (assume Ha, iff.elim_left H Ha);
|
intro Ha;
|
||||||
apply (assume Hb, iff.elim_right H Hb)
|
apply (iff.elim_left H Ha);
|
||||||
|
intro Hb;
|
||||||
|
apply (iff.elim_right H Hb)
|
||||||
|
|
||||||
check tst
|
check tst
|
||||||
|
|
|
@ -4,14 +4,18 @@ theorem tst (a b : Prop) (H : a ↔ b) : b ↔ a
|
||||||
:= have H1 [visible] : a → b, -- We need to mark H1 as fact, otherwise it is not visible by tactics
|
:= have H1 [visible] : a → b, -- We need to mark H1 as fact, otherwise it is not visible by tactics
|
||||||
from iff.elim_left H,
|
from iff.elim_left H,
|
||||||
by rapply iff.intro;
|
by rapply iff.intro;
|
||||||
apply (assume Ha, H1 Ha);
|
intro Ha;
|
||||||
apply (assume Hb, iff.elim_right H Hb)
|
apply (H1 Ha);
|
||||||
|
intro Hb;
|
||||||
|
apply (iff.elim_right H Hb)
|
||||||
|
|
||||||
theorem tst2 (a b : Prop) (H : a ↔ b) : b ↔ a
|
theorem tst2 (a b : Prop) (H : a ↔ b) : b ↔ a
|
||||||
:= have H1 [visible] : a → b,
|
:= have H1 [visible] : a → b,
|
||||||
from iff.elim_left H,
|
from iff.elim_left H,
|
||||||
begin
|
begin
|
||||||
rapply iff.intro,
|
rapply iff.intro,
|
||||||
apply (assume Ha, H1 Ha),
|
intro Ha;
|
||||||
apply (assume Hb, iff.elim_right H Hb)
|
apply (H1 Ha),
|
||||||
|
intro Hb;
|
||||||
|
apply (iff.elim_right H Hb)
|
||||||
end
|
end
|
||||||
|
|
|
@ -4,7 +4,6 @@ open tactic
|
||||||
theorem tst (a b : Prop) (H : ¬ a ∨ ¬ b) (Hb : b) : ¬ a ∧ b
|
theorem tst (a b : Prop) (H : ¬ a ∨ ¬ b) (Hb : b) : ¬ a ∧ b
|
||||||
:= by apply and.intro;
|
:= by apply and.intro;
|
||||||
assumption;
|
assumption;
|
||||||
apply not_intro;
|
|
||||||
exact
|
exact
|
||||||
(assume Ha, or.elim H
|
(assume Ha, or.elim H
|
||||||
(assume Hna, @absurd _ false Ha Hna)
|
(assume Hna, @absurd _ false Ha Hna)
|
||||||
|
|
|
@ -5,7 +5,6 @@ theorem tst (a b : Prop) (H : ¬ a ∨ ¬ b) (Hb : b) : ¬ a ∧ b :=
|
||||||
begin
|
begin
|
||||||
apply and.intro,
|
apply and.intro,
|
||||||
assumption,
|
assumption,
|
||||||
apply not_intro,
|
|
||||||
assume Ha, or.elim H
|
assume Ha, or.elim H
|
||||||
(assume Hna, @absurd _ false Ha Hna)
|
(assume Hna, @absurd _ false Ha Hna)
|
||||||
(assume Hnb, @absurd _ false Hb Hnb)
|
(assume Hnb, @absurd _ false Hb Hnb)
|
||||||
|
|
Loading…
Reference in a new issue