feat(library/tactic/apply_tactic): modify heuristic for adding arguments to apply tactic.

This commit is contained in:
Leonardo de Moura 2014-10-23 22:36:32 -07:00
parent f9aa1a1b84
commit b83b065d00
5 changed files with 17 additions and 12 deletions

View file

@ -70,11 +70,12 @@ static proof_state_seq apply_tactic_core(environment const & env, io_state const
expr e_t = e_t_cs.first; expr e_t = e_t_cs.first;
buffer<expr> metas; buffer<expr> metas;
if (add_meta) { if (add_meta) {
unsigned num_t = get_expect_num_args(*tc, t); // unsigned num_t = get_expect_num_args(*tc, t);
unsigned num_e_t = get_expect_num_args(*tc, e_t); unsigned num_e_t = get_expect_num_args(*tc, e_t);
if (num_t > num_e_t) // Remark: we used to add (num_e_t - num_t) arguments.
return proof_state_seq(); // no hope to unify then // This would allow us to handle (A -> B) without using intros,
for (unsigned i = 0; i < num_e_t - num_t; i++) { // but it was preventing us from solving other problems
for (unsigned i = 0; i < num_e_t; i++) {
auto e_t_cs = tc->whnf(e_t); auto e_t_cs = tc->whnf(e_t);
e_t_cs.second.linearize(cs); e_t_cs.second.linearize(cs);
e_t = e_t_cs.first; e_t = e_t_cs.first;

View file

@ -2,7 +2,9 @@ import logic
theorem tst (a b : Prop) (H : a ↔ b) : b ↔ a theorem tst (a b : Prop) (H : a ↔ b) : b ↔ a
:= by rapply iff.intro; := by rapply iff.intro;
apply (assume Ha, iff.elim_left H Ha); intro Ha;
apply (assume Hb, iff.elim_right H Hb) apply (iff.elim_left H Ha);
intro Hb;
apply (iff.elim_right H Hb)
check tst check tst

View file

@ -4,14 +4,18 @@ theorem tst (a b : Prop) (H : a ↔ b) : b ↔ a
:= have H1 [visible] : a → b, -- We need to mark H1 as fact, otherwise it is not visible by tactics := have H1 [visible] : a → b, -- We need to mark H1 as fact, otherwise it is not visible by tactics
from iff.elim_left H, from iff.elim_left H,
by rapply iff.intro; by rapply iff.intro;
apply (assume Ha, H1 Ha); intro Ha;
apply (assume Hb, iff.elim_right H Hb) apply (H1 Ha);
intro Hb;
apply (iff.elim_right H Hb)
theorem tst2 (a b : Prop) (H : a ↔ b) : b ↔ a theorem tst2 (a b : Prop) (H : a ↔ b) : b ↔ a
:= have H1 [visible] : a → b, := have H1 [visible] : a → b,
from iff.elim_left H, from iff.elim_left H,
begin begin
rapply iff.intro, rapply iff.intro,
apply (assume Ha, H1 Ha), intro Ha;
apply (assume Hb, iff.elim_right H Hb) apply (H1 Ha),
intro Hb;
apply (iff.elim_right H Hb)
end end

View file

@ -4,7 +4,6 @@ open tactic
theorem tst (a b : Prop) (H : ¬ a ¬ b) (Hb : b) : ¬ a ∧ b theorem tst (a b : Prop) (H : ¬ a ¬ b) (Hb : b) : ¬ a ∧ b
:= by apply and.intro; := by apply and.intro;
assumption; assumption;
apply not_intro;
exact exact
(assume Ha, or.elim H (assume Ha, or.elim H
(assume Hna, @absurd _ false Ha Hna) (assume Hna, @absurd _ false Ha Hna)

View file

@ -5,7 +5,6 @@ theorem tst (a b : Prop) (H : ¬ a ¬ b) (Hb : b) : ¬ a ∧ b :=
begin begin
apply and.intro, apply and.intro,
assumption, assumption,
apply not_intro,
assume Ha, or.elim H assume Ha, or.elim H
(assume Hna, @absurd _ false Ha Hna) (assume Hna, @absurd _ false Ha Hna)
(assume Hnb, @absurd _ false Hb Hnb) (assume Hnb, @absurd _ false Hb Hnb)