chore(library/data/real): replace theorems with more general versions from algebra

This commit is contained in:
Rob Lewis 2015-06-16 16:55:06 +10:00 committed by Leonardo de Moura
parent b23e23061f
commit b94d0a948d
4 changed files with 54 additions and 634 deletions

View file

@ -1,561 +0,0 @@
/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad
Partially ordered additive groups, modeled on Isabelle's library. We could refine the structures,
but we would have to declare more inheritance paths.
-/
import logic.eq data.unit data.sigma data.prod
import algebra.function algebra.binary
import algebra.group algebra.order
open eq eq.ops -- note: ⁻¹ will be overloaded
namespace algebra
variable {A : Type}
/- partially ordered monoids, such as the natural numbers -/
structure ordered_cancel_comm_monoid [class] (A : Type) extends add_comm_monoid A,
add_left_cancel_semigroup A, add_right_cancel_semigroup A, order_pair A :=
(add_le_add_left : ∀a b, le a b → ∀c, le (add c a) (add c b))
(le_of_add_le_add_left : ∀a b c, le (add a b) (add a c) → le b c)
section
variables [s : ordered_cancel_comm_monoid A]
variables {a b c d e : A}
include s
theorem add_le_add_left (H : a ≤ b) (c : A) : c + a ≤ c + b :=
!ordered_cancel_comm_monoid.add_le_add_left H c
theorem add_le_add_right (H : a ≤ b) (c : A) : a + c ≤ b + c :=
(add.comm c a) ▸ (add.comm c b) ▸ (add_le_add_left H c)
theorem add_le_add (Hab : a ≤ b) (Hcd : c ≤ d) : a + c ≤ b + d :=
le.trans (add_le_add_right Hab c) (add_le_add_left Hcd b)
theorem add_lt_add_left (H : a < b) (c : A) : c + a < c + b :=
have H1 : c + a ≤ c + b, from add_le_add_left (le_of_lt H) c,
have H2 : c + a ≠ c + b, from
take H3 : c + a = c + b,
have H4 : a = b, from add.left_cancel H3,
ne_of_lt H H4,
sorry--lt_of_le_of_ne H1 H2
theorem add_lt_add_right (H : a < b) (c : A) : a + c < b + c :=
begin
rewrite [add.comm, {b + _}add.comm],
exact (add_lt_add_left H c)
end
theorem le_add_of_nonneg_right (H : b ≥ 0) : a ≤ a + b :=
begin
have H1 : a + b ≥ a + 0, from add_le_add_left H a,
rewrite add_zero at H1,
exact H1
end
theorem le_add_of_nonneg_left (H : b ≥ 0) : a ≤ b + a :=
begin
have H1 : 0 + a ≤ b + a, from add_le_add_right H a,
rewrite zero_add at H1,
exact H1
end
theorem add_lt_add (Hab : a < b) (Hcd : c < d) : a + c < b + d :=
lt.trans (add_lt_add_right Hab c) (add_lt_add_left Hcd b)
theorem add_lt_add_of_le_of_lt (Hab : a ≤ b) (Hcd : c < d) : a + c < b + d :=
lt_of_le_of_lt (add_le_add_right Hab c) (add_lt_add_left Hcd b)
theorem add_lt_add_of_lt_of_le (Hab : a < b) (Hcd : c ≤ d) : a + c < b + d :=
lt_of_lt_of_le (add_lt_add_right Hab c) (add_le_add_left Hcd b)
theorem lt_add_of_pos_right (H : b > 0) : a < a + b := !add_zero ▸ add_lt_add_left H a
theorem lt_add_of_pos_left (H : b > 0) : a < b + a := !zero_add ▸ add_lt_add_right H a
-- here we start using le_of_add_le_add_left.
theorem le_of_add_le_add_left (H : a + b ≤ a + c) : b ≤ c :=
!ordered_cancel_comm_monoid.le_of_add_le_add_left H
theorem le_of_add_le_add_right (H : a + b ≤ c + b) : a ≤ c :=
le_of_add_le_add_left (show b + a ≤ b + c, begin rewrite [add.comm, {b + _}add.comm], exact H end)
theorem lt_of_add_lt_add_left (H : a + b < a + c) : b < c :=
have H1 : b ≤ c, from le_of_add_le_add_left (le_of_lt H),
have H2 : b ≠ c, from
assume H3 : b = c, lt.irrefl _ (H3 ▸ H),
sorry --lt_of_le_of_ne H1 H2
theorem lt_of_add_lt_add_right (H : a + b < c + b) : a < c :=
lt_of_add_lt_add_left ((add.comm a b) ▸ (add.comm c b) ▸ H)
theorem add_le_add_left_iff (a b c : A) : a + b ≤ a + c ↔ b ≤ c :=
iff.intro le_of_add_le_add_left (assume H, add_le_add_left H _)
theorem add_le_add_right_iff (a b c : A) : a + b ≤ c + b ↔ a ≤ c :=
iff.intro le_of_add_le_add_right (assume H, add_le_add_right H _)
theorem add_lt_add_left_iff (a b c : A) : a + b < a + c ↔ b < c :=
iff.intro lt_of_add_lt_add_left (assume H, add_lt_add_left H _)
theorem add_lt_add_right_iff (a b c : A) : a + b < c + b ↔ a < c :=
iff.intro lt_of_add_lt_add_right (assume H, add_lt_add_right H _)
-- here we start using properties of zero.
theorem add_nonneg (Ha : 0 ≤ a) (Hb : 0 ≤ b) : 0 ≤ a + b :=
!zero_add ▸ (add_le_add Ha Hb)
theorem add_pos (Ha : 0 < a) (Hb : 0 < b) : 0 < a + b :=
!zero_add ▸ (add_lt_add Ha Hb)
theorem add_pos_of_pos_of_nonneg (Ha : 0 < a) (Hb : 0 ≤ b) : 0 < a + b :=
!zero_add ▸ (add_lt_add_of_lt_of_le Ha Hb)
theorem add_pos_of_nonneg_of_pos (Ha : 0 ≤ a) (Hb : 0 < b) : 0 < a + b :=
!zero_add ▸ (add_lt_add_of_le_of_lt Ha Hb)
theorem add_nonpos (Ha : a ≤ 0) (Hb : b ≤ 0) : a + b ≤ 0 :=
!zero_add ▸ (add_le_add Ha Hb)
theorem add_neg (Ha : a < 0) (Hb : b < 0) : a + b < 0 :=
!zero_add ▸ (add_lt_add Ha Hb)
theorem add_neg_of_neg_of_nonpos (Ha : a < 0) (Hb : b ≤ 0) : a + b < 0 :=
!zero_add ▸ (add_lt_add_of_lt_of_le Ha Hb)
theorem add_neg_of_nonpos_of_neg (Ha : a ≤ 0) (Hb : b < 0) : a + b < 0 :=
!zero_add ▸ (add_lt_add_of_le_of_lt Ha Hb)
-- TODO: add nonpos version (will be easier with simplifier)
theorem add_eq_zero_iff_eq_zero_and_eq_zero_of_nonneg_of_nonneg
(Ha : 0 ≤ a) (Hb : 0 ≤ b) : a + b = 0 ↔ a = 0 ∧ b = 0 :=
iff.intro
(assume Hab : a + b = 0,
have Ha' : a ≤ 0, from
calc
a = a + 0 : by rewrite add_zero
... ≤ a + b : add_le_add_left Hb
... = 0 : Hab,
have Haz : a = 0, from le.antisymm Ha' Ha,
have Hb' : b ≤ 0, from
calc
b = 0 + b : by rewrite zero_add
... ≤ a + b : add_le_add_right Ha
... = 0 : Hab,
have Hbz : b = 0, from le.antisymm Hb' Hb,
and.intro Haz Hbz)
(assume Hab : a = 0 ∧ b = 0,
obtain Ha' Hb', from Hab,
by rewrite [Ha', Hb', add_zero])
theorem le_add_of_nonneg_of_le (Ha : 0 ≤ a) (Hbc : b ≤ c) : b ≤ a + c :=
!zero_add ▸ add_le_add Ha Hbc
theorem le_add_of_le_of_nonneg (Hbc : b ≤ c) (Ha : 0 ≤ a) : b ≤ c + a :=
!add_zero ▸ add_le_add Hbc Ha
theorem lt_add_of_pos_of_le (Ha : 0 < a) (Hbc : b ≤ c) : b < a + c :=
!zero_add ▸ add_lt_add_of_lt_of_le Ha Hbc
theorem lt_add_of_le_of_pos (Hbc : b ≤ c) (Ha : 0 < a) : b < c + a :=
!add_zero ▸ add_lt_add_of_le_of_lt Hbc Ha
theorem add_le_of_nonpos_of_le (Ha : a ≤ 0) (Hbc : b ≤ c) : a + b ≤ c :=
!zero_add ▸ add_le_add Ha Hbc
theorem add_le_of_le_of_nonpos (Hbc : b ≤ c) (Ha : a ≤ 0) : b + a ≤ c :=
!add_zero ▸ add_le_add Hbc Ha
theorem add_lt_of_neg_of_le (Ha : a < 0) (Hbc : b ≤ c) : a + b < c :=
!zero_add ▸ add_lt_add_of_lt_of_le Ha Hbc
theorem add_lt_of_le_of_neg (Hbc : b ≤ c) (Ha : a < 0) : b + a < c :=
!add_zero ▸ add_lt_add_of_le_of_lt Hbc Ha
theorem lt_add_of_nonneg_of_lt (Ha : 0 ≤ a) (Hbc : b < c) : b < a + c :=
!zero_add ▸ add_lt_add_of_le_of_lt Ha Hbc
theorem lt_add_of_lt_of_nonneg (Hbc : b < c) (Ha : 0 ≤ a) : b < c + a :=
!add_zero ▸ add_lt_add_of_lt_of_le Hbc Ha
theorem lt_add_of_pos_of_lt (Ha : 0 < a) (Hbc : b < c) : b < a + c :=
!zero_add ▸ add_lt_add Ha Hbc
theorem lt_add_of_lt_of_pos (Hbc : b < c) (Ha : 0 < a) : b < c + a :=
!add_zero ▸ add_lt_add Hbc Ha
theorem add_lt_of_nonpos_of_lt (Ha : a ≤ 0) (Hbc : b < c) : a + b < c :=
!zero_add ▸ add_lt_add_of_le_of_lt Ha Hbc
theorem add_lt_of_lt_of_nonpos (Hbc : b < c) (Ha : a ≤ 0) : b + a < c :=
!add_zero ▸ add_lt_add_of_lt_of_le Hbc Ha
theorem add_lt_of_neg_of_lt (Ha : a < 0) (Hbc : b < c) : a + b < c :=
!zero_add ▸ add_lt_add Ha Hbc
theorem add_lt_of_lt_of_neg (Hbc : b < c) (Ha : a < 0) : b + a < c :=
!add_zero ▸ add_lt_add Hbc Ha
end
-- TODO: add properties of max and min
/- partially ordered groups -/
structure ordered_comm_group [class] (A : Type) extends add_comm_group A, order_pair A :=
(add_le_add_left : ∀a b, le a b → ∀c, le (add c a) (add c b))
theorem ordered_comm_group.le_of_add_le_add_left [s : ordered_comm_group A] {a b c : A} (H : a + b ≤ a + c) : b ≤ c :=
assert H' : -a + (a + b) ≤ -a + (a + c), from ordered_comm_group.add_le_add_left _ _ H _,
by rewrite *neg_add_cancel_left at H'; exact H'
definition ordered_comm_group.to_ordered_cancel_comm_monoid [instance] [coercion] [reducible]
[s : ordered_comm_group A] : ordered_cancel_comm_monoid A :=
⦃ ordered_cancel_comm_monoid, s,
add_left_cancel := @add.left_cancel A s,
add_right_cancel := @add.right_cancel A s,
le_of_add_le_add_left := @ordered_comm_group.le_of_add_le_add_left A s ⦄
section
variables [s : ordered_comm_group A] (a b c d e : A)
include s
theorem neg_le_neg {a b : A} (H : a ≤ b) : -b ≤ -a :=
have H1 : 0 ≤ -a + b, from !add.left_inv ▸ !(add_le_add_left H),
!add_neg_cancel_right ▸ !zero_add ▸ add_le_add_right H1 (-b)
theorem le_of_neg_le_neg {a b : A} (H : -b ≤ -a) : a ≤ b :=
neg_neg a ▸ neg_neg b ▸ neg_le_neg H
theorem neg_le_neg_iff_le : -a ≤ -b ↔ b ≤ a :=
iff.intro le_of_neg_le_neg neg_le_neg
theorem nonneg_of_neg_nonpos {a : A} (H : -a ≤ 0) : 0 ≤ a :=
le_of_neg_le_neg (neg_zero⁻¹ ▸ H)
theorem neg_nonpos_of_nonneg {a : A} (H : 0 ≤ a) : -a ≤ 0 :=
neg_zero ▸ neg_le_neg H
theorem neg_nonpos_iff_nonneg : -a ≤ 0 ↔ 0 ≤ a :=
iff.intro nonneg_of_neg_nonpos neg_nonpos_of_nonneg
theorem nonpos_of_neg_nonneg {a : A} (H : 0 ≤ -a) : a ≤ 0 :=
le_of_neg_le_neg (neg_zero⁻¹ ▸ H)
theorem neg_nonneg_of_nonpos {a : A} (H : a ≤ 0) : 0 ≤ -a :=
neg_zero ▸ neg_le_neg H
theorem neg_nonneg_iff_nonpos : 0 ≤ -a ↔ a ≤ 0 :=
iff.intro nonpos_of_neg_nonneg neg_nonneg_of_nonpos
theorem neg_lt_neg {a b : A} (H : a < b) : -b < -a :=
have H1 : 0 < -a + b, from !add.left_inv ▸ !(add_lt_add_left H),
!add_neg_cancel_right ▸ !zero_add ▸ add_lt_add_right H1 (-b)
theorem lt_of_neg_lt_neg {a b : A} (H : -b < -a) : a < b :=
neg_neg a ▸ neg_neg b ▸ neg_lt_neg H
theorem neg_lt_neg_iff_lt : -a < -b ↔ b < a :=
iff.intro lt_of_neg_lt_neg neg_lt_neg
theorem pos_of_neg_neg {a : A} (H : -a < 0) : 0 < a :=
lt_of_neg_lt_neg (neg_zero⁻¹ ▸ H)
theorem neg_neg_of_pos {a : A} (H : 0 < a) : -a < 0 :=
neg_zero ▸ neg_lt_neg H
theorem neg_neg_iff_pos : -a < 0 ↔ 0 < a :=
iff.intro pos_of_neg_neg neg_neg_of_pos
theorem neg_of_neg_pos {a : A} (H : 0 < -a) : a < 0 :=
lt_of_neg_lt_neg (neg_zero⁻¹ ▸ H)
theorem neg_pos_of_neg {a : A} (H : a < 0) : 0 < -a :=
neg_zero ▸ neg_lt_neg H
theorem neg_pos_iff_neg : 0 < -a ↔ a < 0 :=
iff.intro neg_of_neg_pos neg_pos_of_neg
theorem le_neg_iff_le_neg : a ≤ -b ↔ b ≤ -a := !neg_neg ▸ !neg_le_neg_iff_le
theorem neg_le_iff_neg_le : -a ≤ b ↔ -b ≤ a := !neg_neg ▸ !neg_le_neg_iff_le
theorem lt_neg_iff_lt_neg : a < -b ↔ b < -a := !neg_neg ▸ !neg_lt_neg_iff_lt
theorem neg_lt_iff_neg_lt : -a < b ↔ -b < a := !neg_neg ▸ !neg_lt_neg_iff_lt
theorem sub_nonneg_iff_le : 0 ≤ a - b ↔ b ≤ a := !sub_self ▸ !add_le_add_right_iff
theorem sub_nonpos_iff_le : a - b ≤ 0 ↔ a ≤ b := !sub_self ▸ !add_le_add_right_iff
theorem sub_pos_iff_lt : 0 < a - b ↔ b < a := !sub_self ▸ !add_lt_add_right_iff
theorem sub_neg_iff_lt : a - b < 0 ↔ a < b := !sub_self ▸ !add_lt_add_right_iff
theorem add_le_iff_le_neg_add : a + b ≤ c ↔ b ≤ -a + c :=
have H: a + b ≤ c ↔ -a + (a + b) ≤ -a + c, from iff.symm (!add_le_add_left_iff),
!neg_add_cancel_left ▸ H
theorem add_le_iff_le_sub_left : a + b ≤ c ↔ b ≤ c - a :=
by rewrite [sub_eq_add_neg, {c+_}add.comm]; apply add_le_iff_le_neg_add
theorem add_le_iff_le_sub_right : a + b ≤ c ↔ a ≤ c - b :=
have H: a + b ≤ c ↔ a + b - b ≤ c - b, from iff.symm (!add_le_add_right_iff),
!add_neg_cancel_right ▸ H
theorem le_add_iff_neg_add_le : a ≤ b + c ↔ -b + a ≤ c :=
assert H: a ≤ b + c ↔ -b + a ≤ -b + (b + c), from iff.symm (!add_le_add_left_iff),
by rewrite neg_add_cancel_left at H; exact H
theorem le_add_iff_sub_left_le : a ≤ b + c ↔ a - b ≤ c :=
by rewrite [sub_eq_add_neg, {a+_}add.comm]; apply le_add_iff_neg_add_le
theorem le_add_iff_sub_right_le : a ≤ b + c ↔ a - c ≤ b :=
assert H: a ≤ b + c ↔ a - c ≤ b + c - c, from iff.symm (!add_le_add_right_iff),
by rewrite add_neg_cancel_right at H; exact H
theorem add_lt_iff_lt_neg_add_left : a + b < c ↔ b < -a + c :=
assert H: a + b < c ↔ -a + (a + b) < -a + c, from iff.symm (!add_lt_add_left_iff),
begin rewrite neg_add_cancel_left at H, exact H end
theorem add_lt_iff_lt_neg_add_right : a + b < c ↔ a < -b + c :=
by rewrite add.comm; apply add_lt_iff_lt_neg_add_left
theorem add_lt_iff_lt_sub_left : a + b < c ↔ b < c - a :=
begin
rewrite [sub_eq_add_neg, {c+_}add.comm],
apply add_lt_iff_lt_neg_add_left
end
theorem add_lt_add_iff_lt_sub_right : a + b < c ↔ a < c - b :=
assert H: a + b < c ↔ a + b - b < c - b, from iff.symm (!add_lt_add_right_iff),
by rewrite add_neg_cancel_right at H; exact H
theorem lt_add_iff_neg_add_lt_left : a < b + c ↔ -b + a < c :=
assert H: a < b + c ↔ -b + a < -b + (b + c), from iff.symm (!add_lt_add_left_iff),
by rewrite neg_add_cancel_left at H; exact H
theorem lt_add_iff_neg_add_lt_right : a < b + c ↔ -c + a < b :=
by rewrite add.comm; apply lt_add_iff_neg_add_lt_left
theorem lt_add_iff_sub_lt_left : a < b + c ↔ a - b < c :=
by rewrite [sub_eq_add_neg, {a + _}add.comm]; apply lt_add_iff_neg_add_lt_left
theorem lt_add_iff_sub_lt_right : a < b + c ↔ a - c < b :=
by rewrite add.comm; apply lt_add_iff_sub_lt_left
-- TODO: the Isabelle library has varations on a + b ≤ b ↔ a ≤ 0
theorem le_iff_le_of_sub_eq_sub {a b c d : A} (H : a - b = c - d) : a ≤ b ↔ c ≤ d :=
calc
a ≤ b ↔ a - b ≤ 0 : iff.symm (sub_nonpos_iff_le a b)
... = (c - d ≤ 0) : by rewrite H
... ↔ c ≤ d : sub_nonpos_iff_le c d
theorem lt_iff_lt_of_sub_eq_sub {a b c d : A} (H : a - b = c - d) : a < b ↔ c < d :=
calc
a < b ↔ a - b < 0 : iff.symm (sub_neg_iff_lt a b)
... = (c - d < 0) : by rewrite H
... ↔ c < d : sub_neg_iff_lt c d
theorem sub_le_sub_left {a b : A} (H : a ≤ b) (c : A) : c - b ≤ c - a :=
add_le_add_left (neg_le_neg H) c
theorem sub_le_sub_right {a b : A} (H : a ≤ b) (c : A) : a - c ≤ b - c := add_le_add_right H (-c)
theorem sub_le_sub {a b c d : A} (Hab : a ≤ b) (Hcd : c ≤ d) : a - d ≤ b - c :=
add_le_add Hab (neg_le_neg Hcd)
theorem sub_lt_sub_left {a b : A} (H : a < b) (c : A) : c - b < c - a :=
add_lt_add_left (neg_lt_neg H) c
theorem sub_lt_sub_right {a b : A} (H : a < b) (c : A) : a - c < b - c := add_lt_add_right H (-c)
theorem sub_lt_sub {a b c d : A} (Hab : a < b) (Hcd : c < d) : a - d < b - c :=
add_lt_add Hab (neg_lt_neg Hcd)
theorem sub_lt_sub_of_le_of_lt {a b c d : A} (Hab : a ≤ b) (Hcd : c < d) : a - d < b - c :=
add_lt_add_of_le_of_lt Hab (neg_lt_neg Hcd)
theorem sub_lt_sub_of_lt_of_le {a b c d : A} (Hab : a < b) (Hcd : c ≤ d) : a - d < b - c :=
add_lt_add_of_lt_of_le Hab (neg_le_neg Hcd)
theorem sub_le_self (a : A) {b : A} (H : b ≥ 0) : a - b ≤ a :=
calc
a - b = a + -b : rfl
... ≤ a + 0 : add_le_add_left (neg_nonpos_of_nonneg H)
... = a : by rewrite add_zero
theorem sub_lt_self (a : A) {b : A} (H : b > 0) : a - b < a :=
calc
a - b = a + -b : rfl
... < a + 0 : add_lt_add_left (neg_neg_of_pos H)
... = a : by rewrite add_zero
end
structure decidable_linear_ordered_comm_group [class] (A : Type)
extends add_comm_group A, decidable_linear_order A :=
(add_le_add_left : ∀ a b, le a b → ∀ c, le (add c a) (add c b))
private theorem add_le_add_left' (A : Type) (s : decidable_linear_ordered_comm_group A) (a b : A) :
a ≤ b → (∀ c : A, c + a ≤ c + b) :=
decidable_linear_ordered_comm_group.add_le_add_left a b
definition decidable_linear_ordered_comm_group.to_ordered_comm_group [instance] [reducible] [coercion]
(A : Type) [s : decidable_linear_ordered_comm_group A] : ordered_comm_group A :=
⦃ordered_comm_group, s,
le_of_lt := @le_of_lt A s,
add_le_add_left := add_le_add_left' A s,
lt_of_le_of_lt := @lt_of_le_of_lt A s,
lt_of_lt_of_le := @lt_of_lt_of_le A s⦄
section
variables [s : decidable_linear_ordered_comm_group A]
variables {a b c d e : A}
include s
theorem eq_zero_of_neg_eq (H : -a = a) : a = 0 :=
lt.by_cases
(assume H1 : a < 0,
have H2: a > 0, from H ▸ neg_pos_of_neg H1,
absurd H1 (lt.asymm H2))
(assume H1 : a = 0, H1)
(assume H1 : a > 0,
have H2: a < 0, from H ▸ neg_neg_of_pos H1,
absurd H1 (lt.asymm H2))
definition abs (a : A) : A := if 0 ≤ a then a else -a
theorem abs_of_nonneg (H : a ≥ 0) : abs a = a := if_pos H
theorem abs_of_pos (H : a > 0) : abs a = a := if_pos (le_of_lt H)
theorem abs_of_neg (H : a < 0) : abs a = -a := if_neg (not_le_of_gt H)
theorem abs_zero : abs 0 = (0:A) := abs_of_nonneg (le.refl _)
theorem abs_of_nonpos (H : a ≤ 0) : abs a = -a :=
decidable.by_cases
(assume H1 : a = 0, by rewrite [H1, abs_zero, neg_zero])
(assume H1 : a ≠ 0,
have H2 : a < 0, from lt_of_le_of_ne H H1,
abs_of_neg H2)
theorem abs_neg (a : A) : abs (-a) = abs a :=
or.elim (le.total 0 a)
(assume H1 : 0 ≤ a, by rewrite [abs_of_nonpos (neg_nonpos_of_nonneg H1), neg_neg, abs_of_nonneg H1])
(assume H1 : a ≤ 0, by rewrite [abs_of_nonneg (neg_nonneg_of_nonpos H1), abs_of_nonpos H1])
theorem abs_nonneg (a : A) : abs a ≥ 0 :=
or.elim (le.total 0 a)
(assume H : 0 ≤ a, by rewrite (abs_of_nonneg H); exact H)
(assume H : a ≤ 0,
calc
0 ≤ -a : neg_nonneg_of_nonpos H
... = abs a : abs_of_nonpos H)
theorem abs_abs (a : A) : abs (abs a) = abs a := abs_of_nonneg !abs_nonneg
theorem le_abs_self (a : A) : a ≤ abs a :=
or.elim (le.total 0 a)
(assume H : 0 ≤ a, abs_of_nonneg H ▸ !le.refl)
(assume H : a ≤ 0, le.trans H !abs_nonneg)
theorem neg_le_abs_self (a : A) : -a ≤ abs a :=
!abs_neg ▸ !le_abs_self
theorem eq_zero_of_abs_eq_zero (H : abs a = 0) : a = 0 :=
have H1 : a ≤ 0, from H ▸ le_abs_self a,
have H2 : -a ≤ 0, from H ▸ abs_neg a ▸ le_abs_self (-a),
le.antisymm H1 (nonneg_of_neg_nonpos H2)
theorem abs_eq_zero_iff_eq_zero (a : A) : abs a = 0 ↔ a = 0 :=
iff.intro eq_zero_of_abs_eq_zero (assume H, congr_arg abs H ⬝ !abs_zero)
theorem abs_pos_of_pos (H : a > 0) : abs a > 0 :=
by rewrite (abs_of_pos H); exact H
theorem abs_pos_of_neg (H : a < 0) : abs a > 0 :=
!abs_neg ▸ abs_pos_of_pos (neg_pos_of_neg H)
theorem abs_pos_of_ne_zero (H : a ≠ 0) : abs a > 0 :=
or.elim (lt_or_gt_of_ne H) abs_pos_of_neg abs_pos_of_pos
theorem abs_sub (a b : A) : abs (a - b) = abs (b - a) :=
by rewrite [-neg_sub, abs_neg]
theorem abs.by_cases {P : A → Prop} {a : A} (H1 : P a) (H2 : P (-a)) : P (abs a) :=
or.elim (le.total 0 a)
(assume H : 0 ≤ a, (abs_of_nonneg H)⁻¹ ▸ H1)
(assume H : a ≤ 0, (abs_of_nonpos H)⁻¹ ▸ H2)
theorem abs_le_of_le_of_neg_le (H1 : a ≤ b) (H2 : -a ≤ b) : abs a ≤ b :=
abs.by_cases H1 H2
theorem abs_lt_of_lt_of_neg_lt (H1 : a < b) (H2 : -a < b) : abs a < b :=
abs.by_cases H1 H2
-- the triangle inequality
section
private lemma aux1 {a b : A} (H1 : a + b ≥ 0) (H2 : a ≥ 0) : abs (a + b) ≤ abs a + abs b :=
decidable.by_cases
(assume H3 : b ≥ 0,
calc
abs (a + b) ≤ abs (a + b) : le.refl
... = a + b : by rewrite (abs_of_nonneg H1)
... = abs a + b : by rewrite (abs_of_nonneg H2)
... = abs a + abs b : by rewrite (abs_of_nonneg H3))
(assume H3 : ¬ b ≥ 0,
assert H4 : b ≤ 0, from le_of_lt (lt_of_not_ge H3),
calc
abs (a + b) = a + b : by rewrite (abs_of_nonneg H1)
... = abs a + b : by rewrite (abs_of_nonneg H2)
... ≤ abs a + 0 : add_le_add_left H4
... ≤ abs a + -b : add_le_add_left (neg_nonneg_of_nonpos H4)
... = abs a + abs b : by rewrite (abs_of_nonpos H4))
private lemma aux2 {a b : A} (H1 : a + b ≥ 0) : abs (a + b) ≤ abs a + abs b :=
or.elim (le.total b 0)
(assume H2 : b ≤ 0,
have H3 : ¬ a < 0, from
assume H4 : a < 0,
have H5 : a + b < 0, from !add_zero ▸ add_lt_add_of_lt_of_le H4 H2,
not_lt_of_ge H1 H5,
aux1 H1 (le_of_not_gt H3))
(assume H2 : 0 ≤ b,
begin
have H3 : abs (b + a) ≤ abs b + abs a,
begin
rewrite add.comm at H1,
exact aux1 H1 H2
end,
rewrite [add.comm, {abs a + _}add.comm],
exact H3
end)
theorem abs_add_le_abs_add_abs (a b : A) : abs (a + b) ≤ abs a + abs b :=
or.elim (le.total 0 (a + b))
(assume H2 : 0 ≤ a + b, aux2 H2)
(assume H2 : a + b ≤ 0,
assert H3 : -a + -b = -(a + b), by rewrite neg_add,
assert H4 : -(a + b) ≥ 0, from iff.mp' (neg_nonneg_iff_nonpos (a+b)) H2,
have H5 : -a + -b ≥ 0, begin rewrite -H3 at H4, exact H4 end,
calc
abs (a + b) = abs (-a + -b) : by rewrite [-abs_neg, neg_add]
... ≤ abs (-a) + abs (-b) : aux2 H5
... = abs a + abs b : by rewrite *abs_neg)
end
theorem abs_sub_abs_le_abs_sub (a b : A) : abs a - abs b ≤ abs (a - b) :=
have H1 : abs a - abs b + abs b ≤ abs (a - b) + abs b, from
calc
abs a - abs b + abs b = abs a : by rewrite sub_add_cancel
... = abs (a - b + b) : by rewrite sub_add_cancel
... ≤ abs (a - b) + abs b : abs_add_le_abs_add_abs,
algebra.le_of_add_le_add_right H1
end
end algebra

View file

@ -300,5 +300,25 @@ theorem pnat_cancel' (n m : +) : (n * n * m)⁻¹ * (rat_of_pnat n * rat_of_p
rewrite [rat.mul.comm, *inv_mul_eq_mul_inv, simp, *inv_cancel_left, *rat.one_mul]
end
definition pceil (a : ) : + := pnat.pos (ubound a) !ubound_pos
theorem pceil_helper {a : } {n : +} (H : pceil a ≤ n) (Ha : a > 0) : n⁻¹ ≤ 1 / a :=
begin
apply rat.le.trans,
apply inv_ge_of_le H,
apply div_le_div_of_le,
apply Ha,
apply ubound_ge
end
theorem inv_pceil_div (a b : ) (Ha : a > 0) (Hb : b > 0) : (pceil (a / b))⁻¹ ≤ b / a :=
begin
rewrite -(@div_div' (b / a)),
apply div_le_div_of_le,
apply div_pos_of_pos,
apply pos_div_of_pos_of_pos Hb Ha,
rewrite [(div_div_eq_mul_div (ne_of_gt Hb) (ne_of_gt Ha)), rat.one_mul],
apply ubound_ge
end
end pnat

View file

@ -21,10 +21,6 @@ local notation 1 := rat.of_num 1
-------------------------------------
-- theorems to add to (ordered) field and/or rat
theorem div_two (a : ) : (a + a) / (1 + 1) = a := sorry
theorem two_pos : (1 : ) + 1 > 0 := rat.add_pos rat.zero_lt_one rat.zero_lt_one
theorem find_midpoint {a b : } (H : a > b) : ∃ c : , a > b + c :=
exists.intro ((a - b) / (1 + 1))
(have H2 [visible] : a + a > (b + b) + (a - b), from calc
@ -32,32 +28,19 @@ theorem find_midpoint {a b : } (H : a > b) : ∃ c : , a > b + c :=
... = b + a + b - b : rat.add_sub_cancel
... = (b + b) + (a - b) : sorry, -- simp
have H3 [visible] : (a + a) / (1 + 1) > ((b + b) + (a - b)) / (1 + 1),
from div_lt_div_of_lt_of_pos H2 two_pos,
from div_lt_div_of_lt_of_pos H2 dec_trivial,
by rewrite [div_two at H3, -div_add_div_same at H3, div_two at H3]; exact H3)
theorem add_sub_comm (a b c d : ) : a + b - (c + d) = (a - c) + (b - d) := sorry
theorem div_helper (a b : ) : (1 / (a * b)) * a = 1 / b := sorry
theorem distrib_three_right (a b c d : ) : (a + b + c) * d = a * d + b * d + c * d := sorry
theorem mul_le_mul_of_mul_div_le (a b c d : ) : a * (b / c) ≤ d → b * a ≤ d * c := sorry
definition pceil (a : ) : + := pnat.pos (ubound a) !ubound_pos
theorem pceil_helper {a : } {n : +} (H : pceil a ≤ n) : n⁻¹ ≤ 1 / a := sorry
theorem inv_pceil_div (a b : ) (Ha : a > 0) (Hb : b > 0) : (pceil (a / b))⁻¹ ≤ b / a := sorry
theorem s_mul_assoc_lemma_4 {n : +} {ε q : } (Hε : ε > 0) (Hq : q > 0) (H : n ≥ pceil (q / ε)) :
q * n⁻¹ ≤ ε :=
begin
let H2 := pceil_helper H,
let H2 := pceil_helper H (pos_div_of_pos_of_pos Hq Hε),
let H3 := mul_le_of_le_div (pos_div_of_pos_of_pos Hq Hε) H2,
rewrite -(one_mul ε),
apply mul_le_mul_of_mul_div_le,
assumption
repeat assumption
end
-------------------------------------
@ -80,10 +63,8 @@ theorem squeeze {a b : } (H : ∀ j : +, a ≤ b + j⁻¹ + j⁻¹ + j⁻
exact absurd !H (not_le_of_gt Ha)
end
theorem squeeze_2 {a b : } (H : ∀ ε : , ε > 0 → a ≥ b - ε) : a ≥ b := sorry
theorem rewrite_helper (a b c d : ) : a * b - c * d = a * (b - d) + (a - c) * d :=
sorry
@ -106,11 +87,9 @@ theorem factor_lemma (a b c d e : ) : abs (a + b + c - (d + (b + e))) = abs (
theorem factor_lemma_2 (a b c d : ) : (a + b) + (c + d) = (a + c) + (d + b) := sorry
-------------------------------------
-- The only sorry's after this point are for the simplifier.
--------------------------------------
--------------------------------------
-- define cauchy sequences and equivalence. show equivalence actually is one
@ -206,7 +185,8 @@ theorem pnat_bound {ε : } (Hε : ε > 0) : ∃ p : +, p⁻¹ ≤ ε :=
existsi (pceil (1 / ε)),
rewrite -(rat.div_div (rat.ne_of_gt Hε)) at {2},
apply pceil_helper,
apply le.refl
apply le.refl,
apply div_pos_of_pos Hε
end
theorem bdd_of_eq_var {s t : seq} (Hs : regular s) (Ht : regular t) (Heq : s ≡ t) :
@ -500,7 +480,7 @@ theorem s_mul_assoc {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regula
apply Hs,
apply Ht,
apply Hu,
rewrite [*s_mul_assoc_lemma_3, -distrib_three_right],
rewrite [*s_mul_assoc_lemma_3, -rat.distrib_three_right],
apply s_mul_assoc_lemma_4,
apply a,
repeat apply rat.add_pos,
@ -608,6 +588,7 @@ theorem mul_bound_helper {s t : seq} (Hs : regular s) (Ht : regular t) (a b c :
apply rat.le.trans,
apply rat.mul_le_mul_of_nonneg_right,
apply pceil_helper Hn,
repeat (apply rat.mul_pos | apply rat.add_pos | apply inv_pos | apply rat_of_pnat_is_pos),
apply rat.le_of_lt,
apply rat.add_pos,
apply rat.mul_pos,
@ -618,7 +599,11 @@ theorem mul_bound_helper {s t : seq} (Hs : regular s) (Ht : regular t) (a b c :
apply rat.add_pos,
repeat apply inv_pos,
apply rat_of_pnat_is_pos,
rewrite div_helper,
have H : (rat_of_pnat (K s) * (b⁻¹ + c⁻¹) + (a⁻¹ + c⁻¹) * rat_of_pnat (K t)) ≠ 0, begin
apply rat.ne_of_gt,
repeat (apply rat.mul_pos | apply rat.add_pos | apply inv_pos | apply rat_of_pnat_is_pos)
end,
rewrite (rat.div_helper H),
apply rat.le.refl
end,
apply rat.add_le_add,
@ -786,55 +771,30 @@ theorem diff_equiv_zero_of_equiv {s t : seq} (Hs : regular s) (Ht : regular t) (
theorem mul_well_defined_half1 {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u)
(Etu : t ≡ u) : smul s t ≡ smul s u :=
begin
let Hst := reg_mul_reg Hs Ht,
let Hsu := reg_mul_reg Hs Hu,
let Hnu := reg_neg_reg Hu,
let Hstu := reg_add_reg Hst Hsu,
let Hsnu := reg_mul_reg Hs Hnu,
let Htnu := reg_add_reg Ht Hnu,
-- let Hstsu := reg_add_reg Hst Hsnu,
apply equiv_of_diff_equiv_zero,
apply Hst,
apply Hsu,
apply equiv.trans,
apply reg_add_reg,
apply Hst,
apply reg_neg_reg Hsu,
rotate 1,
apply zero_is_reg,
apply equiv.symm,
apply add_well_defined,
rotate 2,
apply reg_mul_reg Hs Ht,
apply reg_neg_reg Hsu,
apply equiv.refl,
apply mul_neg_equiv_neg_mul,
apply equiv.trans,
rotate 3,
apply equiv.symm,
apply s_distrib,
repeat assumption,
rotate 1,
apply reg_add_reg Hst Hsnu,
apply Hst,
apply Hsnu,
apply reg_add_reg Hst Hsnu,
apply reg_mul_reg Hs,
apply reg_add_reg Ht Hnu,
apply zero_is_reg,
apply mul_zero_equiv_zero,
rotate 2,
apply diff_equiv_zero_of_equiv,
repeat assumption
apply equiv_of_diff_equiv_zero,
rotate 2,
apply equiv.trans,
rotate 3,
apply equiv.symm,
apply add_well_defined,
rotate 4,
apply equiv.refl,
apply mul_neg_equiv_neg_mul,
apply equiv.trans,
rotate 3,
apply equiv.symm,
apply s_distrib,
rotate 3,
apply mul_zero_equiv_zero,
rotate 2,
apply diff_equiv_zero_of_equiv,
repeat (assumption | apply reg_mul_reg | apply reg_neg_reg | apply reg_add_reg |
apply zero_is_reg)
end
theorem mul_well_defined_half2 {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u)
(Est : s ≡ t) : smul s u ≡ smul t u :=
begin
let Hsu := reg_mul_reg Hs Hu,
let Hus := reg_mul_reg Hu Hs,
let Htu := reg_mul_reg Ht Hu,
let Hut := reg_mul_reg Hu Ht,
apply equiv.trans,
rotate 3,
apply s_mul_comm,
@ -845,7 +805,7 @@ theorem mul_well_defined_half2 {s t u : seq} (Hs : regular s) (Ht : regular t) (
apply Ht,
rotate 1,
apply s_mul_comm,
repeat assumption
repeat (assumption | apply reg_mul_reg)
end
theorem mul_well_defined {s t u v : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u)

View file

@ -11,7 +11,8 @@ At this point, we no longer proceed constructively: this file makes heavy use of
Here, we show that is complete.
-/
import data.real.basic data.real.order data.real.division data.rat data.nat data.pnat logic.axioms.classical
import data.real.basic data.real.order data.real.division data.rat data.nat data.pnat
import logic.axioms.classical
open -[coercions] rat
local notation 0 := rat.of_num 0
local notation 1 := rat.of_num 1