feat(kernel): add experimental support for quotient types
This commit is contained in:
parent
82833bcbe8
commit
b960e123b1
14 changed files with 414 additions and 6 deletions
|
@ -8,4 +8,4 @@ Authors: Leonardo de Moura
|
|||
prelude
|
||||
import init.datatypes init.reserved_notation init.tactic init.logic
|
||||
import init.relation init.wf init.nat init.wf_k init.prod init.priority
|
||||
import init.bool init.num init.sigma init.measurable init.setoid
|
||||
import init.bool init.num init.sigma init.measurable init.setoid init.quot
|
||||
|
|
91
library/init/quot.lean
Normal file
91
library/init/quot.lean
Normal file
|
@ -0,0 +1,91 @@
|
|||
/-
|
||||
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Author: Leonardo de Moura
|
||||
|
||||
Quotient types
|
||||
-/
|
||||
prelude
|
||||
import init.sigma init.setoid
|
||||
open sigma.ops setoid
|
||||
|
||||
constant quot.{l} : Π {A : Type.{l}}, setoid A → Type.{l}
|
||||
|
||||
namespace quot
|
||||
constant mk : Π {A : Type} [s : setoid A], A → quot s
|
||||
notation `⟦`:max a `⟧`:0 := mk a
|
||||
|
||||
constant sound : Π {A : Type} [s : setoid A] {a b : A}, a ≈ b → ⟦a⟧ = ⟦b⟧
|
||||
constant exact : Π {A : Type} [s : setoid A] {a b : A}, ⟦a⟧ = ⟦b⟧ → a ≈ b
|
||||
constant lift : Π {A B : Type} [s : setoid A] (f : A → B), (∀ a b, a ≈ b → f a = f b) → quot s → B
|
||||
constant ind : ∀ {A : Type} [s : setoid A] {B : quot s → Prop}, (∀ a, B ⟦a⟧) → ∀ q, B q
|
||||
|
||||
init_quotient
|
||||
|
||||
protected theorem lift_beta {A B : Type} [s : setoid A] (f : A → B) (c : ∀ a b, a ≈ b → f a = f b) (a : A) : lift f c ⟦a⟧ = f a :=
|
||||
rfl
|
||||
|
||||
protected theorem ind_beta {A : Type} [s : setoid A] {B : quot s → Prop} (p : ∀ a, B ⟦a⟧) (a : A) : ind p ⟦a⟧ = p a :=
|
||||
rfl
|
||||
|
||||
protected definition lift_on [reducible] {A B : Type} [s : setoid A] (q : quot s) (f : A → B) (c : ∀ a b, a ≈ b → f a = f b) : B :=
|
||||
lift f c q
|
||||
|
||||
protected theorem induction_on {A : Type} [s : setoid A] {B : quot s → Prop} (q : quot s) (H : ∀ a, B ⟦a⟧) : B q :=
|
||||
ind H q
|
||||
|
||||
section
|
||||
variable {A : Type}
|
||||
variable [s : setoid A]
|
||||
variable {B : quot s → Type}
|
||||
include s
|
||||
|
||||
protected definition indep [reducible] (f : Π a, B ⟦a⟧) (a : A) : Σ q, B q :=
|
||||
⟨⟦a⟧, f a⟩
|
||||
|
||||
protected lemma indep_coherent (f : Π a, B ⟦a⟧)
|
||||
(H : ∀ (a b : A) (p : a ≈ b), eq.rec (f a) (sound p) = f b)
|
||||
: ∀ a b, a ≈ b → indep f a = indep f b :=
|
||||
λa b e, sigma.equal (sound e) (H a b e)
|
||||
|
||||
protected lemma lift_indep_pr1
|
||||
(f : Π a, B ⟦a⟧) (H : ∀ (a b : A) (p : a ≈ b), eq.rec (f a) (sound p) = f b)
|
||||
(q : quot s) : (lift (indep f) (indep_coherent f H) q).1 = q :=
|
||||
ind (λ a, by esimp) q
|
||||
|
||||
protected definition rec [reducible]
|
||||
(f : Π a, B ⟦a⟧) (H : ∀ (a b : A) (p : a ≈ b), eq.rec (f a) (sound p) = f b)
|
||||
(q : quot s) : B q :=
|
||||
let p := lift (indep f) (indep_coherent f H) q in
|
||||
eq.rec_on (lift_indep_pr1 f H q) (p.2)
|
||||
|
||||
protected definition rec_on [reducible]
|
||||
(q : quot s) (f : Π a, B ⟦a⟧) (H : ∀ (a b : A) (p : a ≈ b), eq.rec (f a) (sound p) = f b) : B q :=
|
||||
rec f H q
|
||||
end
|
||||
|
||||
section
|
||||
variables {A B C : Type}
|
||||
variables [s₁ : setoid A] [s₂ : setoid B]
|
||||
include s₁ s₂
|
||||
|
||||
protected definition lift₂ [reducible]
|
||||
(f : A → B → C)(c : ∀ a₁ a₂ b₁ b₂, a₁ ≈ b₁ → a₂ ≈ b₂ → f a₁ a₂ = f b₁ b₂)
|
||||
(q₁ : quot s₁) (q₂ : quot s₂) : C :=
|
||||
lift
|
||||
(λ a₁, lift (λ a₂, f a₁ a₂) (λ a b H, c a₁ a a₁ b (setoid.refl a₁) H) q₂)
|
||||
(λ a b H, ind (λ a', proof c a a' b a' H (setoid.refl a') qed) q₂)
|
||||
q₁
|
||||
|
||||
protected definition lift_on₂ [reducible]
|
||||
(q₁ : quot s₁) (q₂ : quot s₂) (f : A → B → C) (c : ∀ a₁ a₂ b₁ b₂, a₁ ≈ b₁ → a₂ ≈ b₂ → f a₁ a₂ = f b₁ b₂) : C :=
|
||||
lift₂ f c q₁ q₂
|
||||
|
||||
protected theorem ind₂ {C : quot s₁ → quot s₂ → Prop} (H : ∀ a b, C ⟦a⟧ ⟦b⟧) (q₁ : quot s₁) (q₂ : quot s₂) : C q₁ q₂ :=
|
||||
quot.ind (λ a₁, quot.ind (λ a₂, H a₁ a₂) q₂) q₁
|
||||
|
||||
protected theorem induction_on₂ {C : quot s₁ → quot s₂ → Prop} (q₁ : quot s₁) (q₂ : quot s₂) (H : ∀ a b, C ⟦a⟧ ⟦b⟧) : C q₁ q₂ :=
|
||||
quot.ind (λ a₁, quot.ind (λ a₂, H a₁ a₂) q₂) q₁
|
||||
end
|
||||
end quot
|
|
@ -317,6 +317,8 @@ add_subdirectory(kernel)
|
|||
set(LEAN_LIBS ${LEAN_LIBS} kernel)
|
||||
add_subdirectory(kernel/inductive)
|
||||
set(LEAN_LIBS ${LEAN_LIBS} inductive)
|
||||
add_subdirectory(kernel/quotient)
|
||||
set(LEAN_LIBS ${LEAN_LIBS} quotient)
|
||||
add_subdirectory(library)
|
||||
set(LEAN_LIBS ${LEAN_LIBS} library)
|
||||
add_subdirectory(library/tactic)
|
||||
|
|
|
@ -12,6 +12,7 @@ Author: Leonardo de Moura
|
|||
#include "kernel/abstract.h"
|
||||
#include "kernel/instantiate.h"
|
||||
#include "kernel/inductive/inductive.h"
|
||||
#include "kernel/quotient/quotient.h"
|
||||
#include "kernel/default_converter.h"
|
||||
#include "library/io_state_stream.h"
|
||||
#include "library/scoped_ext.h"
|
||||
|
@ -68,6 +69,7 @@ static void print_axioms(parser & p) {
|
|||
env.for_each_declaration([&](declaration const & d) {
|
||||
name const & n = d.get_name();
|
||||
if (!d.is_definition() &&
|
||||
!is_quotient_decl(env, n) &&
|
||||
!inductive::is_inductive_decl(env, n) &&
|
||||
!inductive::is_elim_rule(env, n) &&
|
||||
!inductive::is_intro_rule(env, n)) {
|
||||
|
@ -678,6 +680,10 @@ static environment help_cmd(parser & p) {
|
|||
return p.env();
|
||||
}
|
||||
|
||||
environment init_quotient_cmd(parser & p) {
|
||||
return module::declare_quotient(p.env());
|
||||
}
|
||||
|
||||
void init_cmd_table(cmd_table & r) {
|
||||
add_cmd(r, cmd_info("open", "create aliases for declarations, and use objects defined in other namespaces",
|
||||
open_cmd));
|
||||
|
@ -695,6 +701,7 @@ void init_cmd_table(cmd_table & r) {
|
|||
add_cmd(r, cmd_info("find_decl", "find definitions and/or theorems", find_cmd));
|
||||
add_cmd(r, cmd_info("local", "define local attributes or notation", local_cmd));
|
||||
add_cmd(r, cmd_info("help", "brief description of available commands and options", help_cmd));
|
||||
add_cmd(r, cmd_info("init_quotient", "initialize quotient type computational rules", init_quotient_cmd));
|
||||
add_cmd(r, cmd_info("#erase_cache", "erase cached definition (for debugging purposes)", erase_cache_cmd));
|
||||
add_cmd(r, cmd_info("#projections", "generate projections for inductive datatype (for debugging purposes)", projections_cmd));
|
||||
add_cmd(r, cmd_info("#telescope_eq", "(for debugging purposes)", telescope_eq_cmd));
|
||||
|
|
|
@ -99,7 +99,7 @@ void init_token_table(token_table & t) {
|
|||
"precedence", "reserve", "infixl", "infixr", "infix", "postfix", "prefix", "notation", "context",
|
||||
"exit", "set_option", "open", "export", "calc_subst", "calc_refl", "calc_trans", "calc_symm", "tactic_hint",
|
||||
"add_begin_end_tactic", "set_begin_end_tactic", "instance", "class", "multiple_instances", "find_decl", "attribute", "persistent",
|
||||
"include", "omit", "migrate", "#erase_cache", "#projections", "#telescope_eq", nullptr};
|
||||
"include", "omit", "migrate", "init_quotient", "#erase_cache", "#projections", "#telescope_eq", nullptr};
|
||||
|
||||
pair<char const *, char const *> aliases[] =
|
||||
{{g_lambda_unicode, "fun"}, {"forall", "Pi"}, {g_forall_unicode, "Pi"}, {g_pi_unicode, "Pi"},
|
||||
|
|
|
@ -11,6 +11,7 @@ Author: Leonardo de Moura
|
|||
#include "util/sexpr/init_module.h"
|
||||
#include "kernel/init_module.h"
|
||||
#include "kernel/inductive/inductive.h"
|
||||
#include "kernel/quotient/quotient.h"
|
||||
#include "library/init_module.h"
|
||||
#include "library/tactic/init_module.h"
|
||||
#include "library/definitional/init_module.h"
|
||||
|
@ -27,6 +28,7 @@ void initialize() {
|
|||
initialize_sexpr_module();
|
||||
initialize_kernel_module();
|
||||
initialize_inductive_module();
|
||||
initialize_quotient_module();
|
||||
init_default_print_fn();
|
||||
initialize_library_module();
|
||||
initialize_tactic_module();
|
||||
|
@ -40,6 +42,7 @@ void finalize() {
|
|||
finalize_definitional_module();
|
||||
finalize_tactic_module();
|
||||
finalize_library_module();
|
||||
finalize_quotient_module();
|
||||
finalize_inductive_module();
|
||||
finalize_kernel_module();
|
||||
finalize_sexpr_module();
|
||||
|
|
2
src/kernel/quotient/CMakeLists.txt
Normal file
2
src/kernel/quotient/CMakeLists.txt
Normal file
|
@ -0,0 +1,2 @@
|
|||
add_library(quotient quotient.cpp)
|
||||
target_link_libraries(quotient ${LEAN_LIBS})
|
168
src/kernel/quotient/quotient.cpp
Normal file
168
src/kernel/quotient/quotient.cpp
Normal file
|
@ -0,0 +1,168 @@
|
|||
/*
|
||||
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Author: Leonardo de Moura
|
||||
|
||||
Quotient types for kernels with proof irrelevance.
|
||||
*/
|
||||
#include "util/sstream.h"
|
||||
#include "kernel/kernel_exception.h"
|
||||
#include "kernel/environment.h"
|
||||
#include "kernel/quotient/quotient.h"
|
||||
|
||||
// Hash code used to identify expected declarations
|
||||
#define QUOT_MK_HASH 1806675635
|
||||
#define QUOT_SOUND_HASH 392276735
|
||||
#define QUOT_EXACT_HASH 843388255
|
||||
#define QUOT_LIFT_HASH 3998074667
|
||||
#define QUOT_IND_HASH 2559759863
|
||||
|
||||
namespace lean {
|
||||
static name * g_quotient_extension = nullptr;
|
||||
static name * g_quotient = nullptr;
|
||||
static name * g_quotient_lift = nullptr;
|
||||
static name * g_quotient_ind = nullptr;
|
||||
static name * g_quotient_mk = nullptr;
|
||||
static name * g_quotient_sound = nullptr;
|
||||
static name * g_quotient_exact = nullptr;
|
||||
|
||||
struct quotient_env_ext : public environment_extension {
|
||||
bool m_initialized;
|
||||
quotient_env_ext():m_initialized(false){}
|
||||
};
|
||||
|
||||
/** \brief Auxiliary object for registering the environment extension */
|
||||
struct quotient_env_ext_reg {
|
||||
unsigned m_ext_id;
|
||||
quotient_env_ext_reg() { m_ext_id = environment::register_extension(std::make_shared<quotient_env_ext>()); }
|
||||
};
|
||||
|
||||
static quotient_env_ext_reg * g_ext = nullptr;
|
||||
|
||||
/** \brief Retrieve environment extension */
|
||||
static quotient_env_ext const & get_extension(environment const & env) {
|
||||
return static_cast<quotient_env_ext const &>(env.get_extension(g_ext->m_ext_id));
|
||||
}
|
||||
|
||||
/** \brief Update environment extension */
|
||||
static environment update(environment const & env, quotient_env_ext const & ext) {
|
||||
return env.update(g_ext->m_ext_id, std::make_shared<quotient_env_ext>(ext));
|
||||
}
|
||||
|
||||
static void check_type_hash(environment const & env, name const & d, unsigned hash) {
|
||||
auto decl = env.find(d);
|
||||
if (!decl)
|
||||
throw kernel_exception(env, sstream() << "failed to initialize quotient type, declaration '" << d << "' is missing");
|
||||
if (decl->get_type().hash() != hash)
|
||||
throw kernel_exception(env, sstream() << "invalid quotient builtin declaration '" << d << "', hash code does not match"
|
||||
<< ", expected: " << hash << ", got: " << decl->get_type().hash());
|
||||
}
|
||||
|
||||
environment declare_quotient(environment const & env) {
|
||||
check_type_hash(env, name{"quot", "mk"}, QUOT_MK_HASH);
|
||||
check_type_hash(env, name{"quot", "sound"}, QUOT_SOUND_HASH);
|
||||
check_type_hash(env, name{"quot", "exact"}, QUOT_EXACT_HASH);
|
||||
check_type_hash(env, name{"quot", "lift"}, QUOT_LIFT_HASH);
|
||||
check_type_hash(env, name{"quot", "ind"}, QUOT_IND_HASH);
|
||||
quotient_env_ext ext = get_extension(env);
|
||||
ext.m_initialized = true;
|
||||
return update(env, ext);
|
||||
}
|
||||
|
||||
optional<pair<expr, constraint_seq>> quotient_normalizer_extension::operator()(expr const & e, extension_context & ctx) const {
|
||||
environment const & env = ctx.env();
|
||||
expr const & fn = get_app_fn(e);
|
||||
if (!is_constant(fn))
|
||||
return none_ecs();
|
||||
quotient_env_ext const & ext = get_extension(env);
|
||||
if (!ext.m_initialized)
|
||||
return none_ecs();
|
||||
unsigned mk_pos;
|
||||
if (const_name(fn) == *g_quotient_lift) {
|
||||
mk_pos = 5;
|
||||
} else if (const_name(fn) == *g_quotient_ind) {
|
||||
mk_pos = 4;
|
||||
} else {
|
||||
return none_ecs();
|
||||
}
|
||||
|
||||
buffer<expr> args;
|
||||
get_app_args(e, args);
|
||||
if (args.size() <= mk_pos)
|
||||
return none_ecs();
|
||||
|
||||
auto mk_cs = ctx.whnf(args[mk_pos]);
|
||||
expr const & mk = mk_cs.first;
|
||||
expr const & mk_fn = get_app_fn(mk);
|
||||
if (!is_constant(mk_fn))
|
||||
return none_ecs();
|
||||
if (const_name(mk_fn) != *g_quotient_mk)
|
||||
return none_ecs();
|
||||
|
||||
expr const & f = args[mk_pos-2];
|
||||
expr r = mk_app(f, app_arg(mk));
|
||||
return some_ecs(r, mk_cs.second);
|
||||
}
|
||||
|
||||
template<typename Ctx>
|
||||
optional<expr> is_quot_meta_app_core(Ctx & ctx, expr const & e) {
|
||||
expr const & fn = get_app_fn(e);
|
||||
if (!is_constant(fn))
|
||||
return none_expr();
|
||||
unsigned mk_pos;
|
||||
if (const_name(fn) == *g_quotient_lift) {
|
||||
mk_pos = 5;
|
||||
} else if (const_name(fn) == *g_quotient_ind) {
|
||||
mk_pos = 4;
|
||||
} else {
|
||||
return none_expr();
|
||||
}
|
||||
|
||||
buffer<expr> args;
|
||||
get_app_args(e, args);
|
||||
if (args.size() <= mk_pos)
|
||||
return none_expr();
|
||||
|
||||
expr mk_app = ctx.whnf(args[mk_pos]).first;
|
||||
return has_expr_metavar_strict(mk_app);
|
||||
}
|
||||
|
||||
optional<expr> quotient_normalizer_extension::may_reduce_later(expr const & e, extension_context & ctx) const {
|
||||
return is_quot_meta_app_core(ctx, e);
|
||||
}
|
||||
|
||||
bool quotient_normalizer_extension::supports(name const & feature) const {
|
||||
return feature == *g_quotient_extension;
|
||||
}
|
||||
|
||||
bool is_quotient_decl(environment const & env, name const & n) {
|
||||
if (!get_extension(env).m_initialized)
|
||||
return false;
|
||||
return
|
||||
n == *g_quotient || n == *g_quotient_lift || n == *g_quotient_ind || n == *g_quotient_mk ||
|
||||
n == *g_quotient_sound || n == *g_quotient_exact;
|
||||
}
|
||||
|
||||
void initialize_quotient_module() {
|
||||
g_quotient_extension = new name("quotient_extension");
|
||||
g_quotient = new name{"quot"};
|
||||
g_quotient_lift = new name{"quot", "lift"};
|
||||
g_quotient_ind = new name{"quot", "ind"};
|
||||
g_quotient_mk = new name{"quot", "mk"};
|
||||
g_quotient_sound = new name{"quot", "sound"};
|
||||
g_quotient_exact = new name{"quot", "exact"};
|
||||
g_ext = new quotient_env_ext_reg();
|
||||
}
|
||||
|
||||
void finalize_quotient_module() {
|
||||
delete g_ext;
|
||||
delete g_quotient_extension;
|
||||
delete g_quotient;
|
||||
delete g_quotient_lift;
|
||||
delete g_quotient_ind;
|
||||
delete g_quotient_mk;
|
||||
delete g_quotient_sound;
|
||||
delete g_quotient_exact;
|
||||
}
|
||||
}
|
26
src/kernel/quotient/quotient.h
Normal file
26
src/kernel/quotient/quotient.h
Normal file
|
@ -0,0 +1,26 @@
|
|||
/*
|
||||
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Author: Leonardo de Moura
|
||||
|
||||
Quotient types for kernels with proof irrelevance.
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
namespace lean {
|
||||
/** \brief Normalizer extension for applying quotient computational rules. */
|
||||
class quotient_normalizer_extension : public normalizer_extension {
|
||||
public:
|
||||
virtual optional<pair<expr, constraint_seq>> operator()(expr const & e, extension_context & ctx) const;
|
||||
virtual optional<expr> may_reduce_later(expr const & e, extension_context & ctx) const;
|
||||
virtual bool supports(name const & feature) const;
|
||||
};
|
||||
|
||||
/** \brief The following function must be invoked to register the quotient type computation rules in the kernel. */
|
||||
environment declare_quotient(environment const & env);
|
||||
/** \brief Return true iff \c n is one of the quotient type builtin constants. */
|
||||
bool is_quotient_decl(environment const & env, name const & n);
|
||||
void initialize_quotient_module();
|
||||
void finalize_quotient_module();
|
||||
}
|
|
@ -20,6 +20,7 @@ Author: Leonardo de Moura
|
|||
#include "util/interrupt.h"
|
||||
#include "util/name_map.h"
|
||||
#include "kernel/type_checker.h"
|
||||
#include "kernel/quotient/quotient.h"
|
||||
#include "library/module.h"
|
||||
#include "library/sorry.h"
|
||||
#include "library/kernel_serializer.h"
|
||||
|
@ -159,9 +160,10 @@ void register_module_object_reader(std::string const & k, module_object_reader r
|
|||
readers[k] = r;
|
||||
}
|
||||
|
||||
static std::string * g_glvl_key = nullptr;
|
||||
static std::string * g_decl_key = nullptr;
|
||||
static std::string * g_glvl_key = nullptr;
|
||||
static std::string * g_decl_key = nullptr;
|
||||
static std::string * g_inductive = nullptr;
|
||||
static std::string * g_quotient = nullptr;
|
||||
|
||||
namespace module {
|
||||
environment add(environment const & env, std::string const & k, std::function<void(serializer &)> const & wr) {
|
||||
|
@ -203,6 +205,19 @@ bool is_definition(environment const & env, name const & n) {
|
|||
return ext.m_module_defs.contains(n);
|
||||
}
|
||||
|
||||
environment declare_quotient(environment const & env) {
|
||||
environment new_env = ::lean::declare_quotient(env);
|
||||
return add(new_env, *g_quotient, [=](serializer &) {});
|
||||
}
|
||||
|
||||
static void quotient_reader(deserializer &, module_idx, shared_environment & senv,
|
||||
std::function<void(asynch_update_fn const &)> &,
|
||||
std::function<void(delayed_update_fn const &)> &) {
|
||||
senv.update([&](environment const & env) {
|
||||
return ::lean::declare_quotient(env);
|
||||
});
|
||||
}
|
||||
|
||||
environment add_inductive(environment env,
|
||||
level_param_names const & level_params,
|
||||
unsigned num_params,
|
||||
|
@ -560,11 +575,14 @@ void initialize_module() {
|
|||
g_glvl_key = new std::string("glvl");
|
||||
g_decl_key = new std::string("decl");
|
||||
g_inductive = new std::string("ind");
|
||||
g_quotient = new std::string("quot");
|
||||
register_module_object_reader(*g_inductive, module::inductive_reader);
|
||||
register_module_object_reader(*g_quotient, module::quotient_reader);
|
||||
}
|
||||
|
||||
void finalize_module() {
|
||||
delete g_inductive;
|
||||
delete g_quotient;
|
||||
delete g_decl_key;
|
||||
delete g_glvl_key;
|
||||
delete g_object_readers;
|
||||
|
|
|
@ -106,6 +106,9 @@ environment add_inductive(environment env,
|
|||
unsigned num_params,
|
||||
list<inductive::inductive_decl> const & decls);
|
||||
|
||||
/** \brief The following function must be invoked to register the quotient type computation rules in the kernel. */
|
||||
environment declare_quotient(environment const & env);
|
||||
|
||||
/**
|
||||
\brief Declare a single inductive datatype. This is just a helper function implemented on top of
|
||||
the previous (more general) add_inductive.
|
||||
|
|
|
@ -5,6 +5,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
Author: Leonardo de Moura
|
||||
*/
|
||||
#include "kernel/inductive/inductive.h"
|
||||
#include "kernel/quotient/quotient.h"
|
||||
#include "library/inductive_unifier_plugin.h"
|
||||
|
||||
namespace lean {
|
||||
|
@ -17,7 +18,8 @@ environment mk_environment(unsigned trust_lvl) {
|
|||
true /* Eta */,
|
||||
true /* Type.{0} is impredicative */,
|
||||
/* builtin support for inductive */
|
||||
std::unique_ptr<normalizer_extension>(new inductive_normalizer_extension()));
|
||||
compose(std::unique_ptr<normalizer_extension>(new inductive_normalizer_extension()),
|
||||
std::unique_ptr<normalizer_extension>(new quotient_normalizer_extension())));
|
||||
return set_unifier_plugin(env, mk_inductive_unifier_plugin());
|
||||
}
|
||||
}
|
||||
|
|
86
tests/lean/run/finset.lean
Normal file
86
tests/lean/run/finset.lean
Normal file
|
@ -0,0 +1,86 @@
|
|||
import logic.axioms.extensional data.list
|
||||
open list setoid quot
|
||||
|
||||
namespace finset
|
||||
|
||||
definition eqv {A : Type} (l₁ l₂ : list A) :=
|
||||
∀ a, a ∈ l₁ ↔ a ∈ l₂
|
||||
|
||||
infix `∼` := eqv
|
||||
|
||||
theorem eqv.refl {A : Type} (l : list A) : l ∼ l :=
|
||||
λ a, !iff.refl
|
||||
|
||||
theorem eqv.symm {A : Type} {l₁ l₂ : list A} : l₁ ∼ l₂ → l₂ ∼ l₁ :=
|
||||
λ H a, iff.symm (H a)
|
||||
|
||||
theorem eqv.trans {A : Type} {l₁ l₂ l₃ : list A} : l₁ ∼ l₂ → l₂ ∼ l₃ → l₁ ∼ l₃ :=
|
||||
λ H₁ H₂ a, iff.trans (H₁ a) (H₂ a)
|
||||
|
||||
theorem eqv.is_equivalence (A : Type) : equivalence (@eqv A) :=
|
||||
and.intro (@eqv.refl A) (and.intro (@eqv.symm A) (@eqv.trans A))
|
||||
|
||||
definition finset_setoid [instance] (A : Type) : setoid (list A) :=
|
||||
setoid.mk (@eqv A) (eqv.is_equivalence A)
|
||||
|
||||
definition finset (A : Type) : Type :=
|
||||
quot (finset_setoid A)
|
||||
|
||||
definition to_finset {A : Type} (l : list A) : finset A :=
|
||||
⟦l⟧
|
||||
|
||||
definition mem {A : Type} (a : A) (s : finset A) : Prop :=
|
||||
quot.lift_on s
|
||||
(λ l : list A, a ∈ l)
|
||||
(λ l₁ l₂ r, propext (r a))
|
||||
|
||||
infix ∈ := mem
|
||||
|
||||
theorem mem_list {A : Type} {a : A} {l : list A} : a ∈ l → a ∈ ⟦l⟧ :=
|
||||
λ H, H
|
||||
|
||||
definition empty {A : Type} : finset A :=
|
||||
⟦nil⟧
|
||||
|
||||
notation `∅` := empty
|
||||
|
||||
definition union {A : Type} (s₁ s₂ : finset A) : finset A :=
|
||||
quot.lift_on₂ s₁ s₂
|
||||
(λ l₁ l₂ : list A, ⟦l₁ ++ l₂⟧)
|
||||
(λ l₁ l₂ l₃ l₄ r₁ r₂,
|
||||
begin
|
||||
apply quot.sound,
|
||||
intro a,
|
||||
apply iff.intro,
|
||||
begin
|
||||
intro inl₁l₂,
|
||||
apply (or.elim (mem_or_mem_of_mem_append inl₁l₂)),
|
||||
intro inl₁, exact (mem_append_of_mem_or_mem (or.inl (iff.mp (r₁ a) inl₁))),
|
||||
intro inl₂, exact (mem_append_of_mem_or_mem (or.inr (iff.mp (r₂ a) inl₂)))
|
||||
end,
|
||||
begin
|
||||
intro inl₃l₄,
|
||||
apply (or.elim (mem_or_mem_of_mem_append inl₃l₄)),
|
||||
intro inl₃, exact (mem_append_of_mem_or_mem (or.inl (iff.mp' (r₁ a) inl₃))),
|
||||
intro inl₄, exact (mem_append_of_mem_or_mem (or.inr (iff.mp' (r₂ a) inl₄)))
|
||||
end,
|
||||
end)
|
||||
|
||||
infix `∪` := union
|
||||
|
||||
theorem mem_union_left {A : Type} (s₁ s₂ : finset A) (a : A) : a ∈ s₁ → a ∈ s₁ ∪ s₂ :=
|
||||
quot.ind₂ (λ l₁ l₂ ainl₁, mem_append_left l₂ ainl₁) s₁ s₂
|
||||
|
||||
theorem mem_union_right {A : Type} (s₁ s₂ : finset A) (a : A) : a ∈ s₂ → a ∈ s₁ ∪ s₂ :=
|
||||
quot.ind₂ (λ l₁ l₂ ainl₂, mem_append_right l₁ ainl₂) s₁ s₂
|
||||
|
||||
theorem union_empty {A : Type} (s : finset A) : s ∪ ∅ = s :=
|
||||
quot.induction_on s (λ l, quot.sound (λ a, by rewrite append_nil_right))
|
||||
|
||||
theorem empty_union {A : Type} (s : finset A) : ∅ ∪ s = s :=
|
||||
quot.induction_on s (λ l, quot.sound (λ a, by rewrite append_nil_left))
|
||||
|
||||
example : to_finset (1::2::nil) ∪ to_finset (2::3::nil) = ⟦1 :: 2 :: 2 :: 3 :: nil⟧ :=
|
||||
rfl
|
||||
|
||||
end finset
|
|
@ -86,7 +86,7 @@ mk :: (refl : ∀x, R x x)
|
|||
(trans : ∀{x y z}, R x y → R y z → R x z)
|
||||
|
||||
-- Definiable quotients are exact if R is an equivalence relation
|
||||
theorem quot.exact {A : Type} {R : A → A → Prop} (eqv : is_equiv R) (q : dquot R) : pquot.exact R :=
|
||||
theorem quot_exact {A : Type} {R : A → A → Prop} (eqv : is_equiv R) (q : dquot R) : pquot.exact R :=
|
||||
λ (a b : A) (H : pquot.abs R a = pquot.abs R b),
|
||||
have H₁ : pquot.abs R a = pquot.abs R a → R (dquot.rep q (pquot.abs R a)) (dquot.rep q (pquot.abs R a)),
|
||||
from λH, is_equiv.refl eqv _,
|
||||
|
|
Loading…
Reference in a new issue