diff --git a/library/data/nat/basic.lean b/library/data/nat/basic.lean index 801569b01..0a061c75f 100644 --- a/library/data/nat/basic.lean +++ b/library/data/nat/basic.lean @@ -48,14 +48,7 @@ num.rec zero -- ------------------------- theorem succ_ne_zero (n : ℕ) : succ n ≠ 0 := -assume H : succ n = 0, -have H2 : true = false, from - let f := (nat.rec false (fun a b, true)) in - calc - true = f (succ n) : rfl - ... = f 0 : H - ... = false : rfl, -absurd H2 true_ne_false +assume H, no_confusion H -- add_rewrite succ_ne_zero @@ -86,10 +79,7 @@ or.elim (zero_or_succ_pred n) (take H3 : n = succ (pred n), H2 (pred n) H3) theorem succ.inj {n m : ℕ} (H : succ n = succ m) : n = m := -calc - n = pred (succ n) : pred.succ - ... = pred (succ m) : H - ... = m : pred.succ +no_confusion H (λe, e) theorem succ.ne_self {n : ℕ} : succ n ≠ n := induction_on n