feat(library/data/real): prove infimum property"

This commit is contained in:
Rob Lewis 2015-07-31 13:30:00 -04:00
parent 795728267d
commit ba2dda08d3

View file

@ -417,8 +417,8 @@ theorem archimedean (x : ) : ∃ z : , x ≤ of_rat (of_int z) :=
begin begin
apply quot.induction_on x, apply quot.induction_on x,
intro s, intro s,
cases (s.bdd_of_regular (s.reg_seq.is_reg s)) with [b, Hb], cases s.bdd_of_regular (s.reg_seq.is_reg s) with [b, Hb],
existsi (ubound b), existsi ubound b,
have H : s.s_le (s.reg_seq.sq s) (s.const (rat.of_nat (ubound b))), begin have H : s.s_le (s.reg_seq.sq s) (s.const (rat.of_nat (ubound b))), begin
apply s.s_le_of_le_pointwise (s.reg_seq.is_reg s), apply s.s_le_of_le_pointwise (s.reg_seq.is_reg s),
apply s.const_reg, apply s.const_reg,
@ -477,7 +477,7 @@ theorem ex_smallest_of_bdd {P : → Prop} (Hbdd : ∃ b : , ∀ z : ,
apply and.intro, apply and.intro,
apply least_of_lt _ !lt_succ_self H', apply least_of_lt _ !lt_succ_self H',
intros z Hz, intros z Hz,
cases (em (z ≤ b)) with [Hzb, Hzb], cases em (z ≤ b) with [Hzb, Hzb],
apply Hb _ Hzb, apply Hb _ Hzb,
let Hzb' := int.lt_of_not_ge Hzb, let Hzb' := int.lt_of_not_ge Hzb,
let Hpos := iff.mpr !int.sub_pos_iff_lt Hzb', let Hpos := iff.mpr !int.sub_pos_iff_lt Hzb',
@ -514,7 +514,7 @@ theorem ex_largest_of_bdd {P : → Prop} (Hbdd : ∃ b : , ∀ z : , z
apply and.intro, apply and.intro,
apply least_of_lt _ !lt_succ_self H', apply least_of_lt _ !lt_succ_self H',
intros z Hz, intros z Hz,
cases (em (z ≥ b)) with [Hzb, Hzb], cases em (z ≥ b) with [Hzb, Hzb],
apply Hb _ Hzb, apply Hb _ Hzb,
let Hzb' := int.lt_of_not_ge Hzb, let Hzb' := int.lt_of_not_ge Hzb,
let Hpos := iff.mpr !int.sub_pos_iff_lt Hzb', let Hpos := iff.mpr !int.sub_pos_iff_lt Hzb',
@ -535,7 +535,7 @@ theorem ex_largest_of_bdd {P : → Prop} (Hbdd : ∃ b : , ∀ z : , z
definition ex_floor (x : ) := definition ex_floor (x : ) :=
(@ex_largest_of_bdd (λ z, x ≥ of_rat (of_int z)) (@ex_largest_of_bdd (λ z, x ≥ of_rat (of_int z))
(begin (begin
existsi (some (archimedean_strict x)), existsi some (archimedean_strict x),
let Har := some_spec (archimedean_strict x), let Har := some_spec (archimedean_strict x),
intros z Hz, intros z Hz,
apply not_le_of_gt, apply not_le_of_gt,
@ -548,10 +548,7 @@ definition ex_floor (x : ) :=
end, end,
exact H exact H
end) end)
(begin (by existsi some (archimedean' x); apply some_spec (archimedean' x)))
existsi some (archimedean' x),
apply some_spec (archimedean' x)
end))
noncomputable definition floor (x : ) : := noncomputable definition floor (x : ) : :=
some (ex_floor x) some (ex_floor x)
@ -590,12 +587,10 @@ theorem floor_succ (x : ) : (floor x) + 1 = floor (x + 1) :=
cases int.lt_or_gt_of_ne H with [Hlt, Hgt], cases int.lt_or_gt_of_ne H with [Hlt, Hgt],
let Hl := floor_largest (iff.mp !int.add_lt_add_iff_lt_sub_right Hlt), let Hl := floor_largest (iff.mp !int.add_lt_add_iff_lt_sub_right Hlt),
rewrite [of_int_sub at Hl, -of_rat_sub at Hl], rewrite [of_int_sub at Hl, -of_rat_sub at Hl],
let Hl' := iff.mpr !add_lt_add_iff_lt_sub_right Hl, apply (not_le_of_gt (iff.mpr !add_lt_add_iff_lt_sub_right Hl)) !floor_spec,
apply (not_le_of_gt Hl') !floor_spec,
let Hl := floor_largest Hgt, let Hl := floor_largest Hgt,
rewrite [of_int_add at Hl, -of_rat_add at Hl], rewrite [of_int_add at Hl, -of_rat_add at Hl],
let Hl' := lt_of_add_lt_add_right Hl, apply (not_le_of_gt (lt_of_add_lt_add_right Hl)) !floor_spec
apply (not_le_of_gt Hl') !floor_spec
end end
theorem floor_succ_lt (x : ) : floor (x - 1) < floor x := theorem floor_succ_lt (x : ) : floor (x - 1) < floor x :=
@ -629,15 +624,18 @@ local postfix `~` := nat_of_pnat
local notation 2 := (1 : ) + 1 local notation 2 := (1 : ) + 1
parameter X : → Prop parameter X : → Prop
-- this definition belongs somewhere else. Where?
definition rpt {A : Type} (op : A → A) : → A → A definition rpt {A : Type} (op : A → A) : → A → A
| rpt 0 := λ a, a | rpt 0 := λ a, a
| rpt (succ k) := λ a, op (rpt k a) | rpt (succ k) := λ a, op (rpt k a)
definition ub (x : ) := ∀ y : , X y → y ≤ x definition ub (x : ) := ∀ y : , X y → y ≤ x
definition bounded := ∃ x : , ub x
definition sup (x : ) := ub x ∧ ∀ y : , ub y → x ≤ y definition sup (x : ) := ub x ∧ ∀ y : , ub y → x ≤ y
definition lb (x : ) := ∀ y : , X y → x ≤ y
definition inf (x : ) := lb x ∧ ∀ y : , lb y → y ≤ x
parameter elt : parameter elt :
hypothesis inh : X elt hypothesis inh : X elt
parameter bound : parameter bound :
@ -722,7 +720,7 @@ theorem succ_helper (n : ) : avg (pr1 (rpt bisect n (under, over))) (pr2 (rpt
theorem under_succ (n : ) : under_seq (succ n) = theorem under_succ (n : ) : under_seq (succ n) =
(if ub (avg_seq n) then under_seq n else avg_seq n) := (if ub (avg_seq n) then under_seq n else avg_seq n) :=
begin begin
cases (em (ub (avg_seq n))) with [Hub, Hub], cases em (ub (avg_seq n)) with [Hub, Hub],
rewrite [if_pos Hub], rewrite [if_pos Hub],
have H : pr1 (bisect (rpt bisect n (under, over))) = under_seq n, by have H : pr1 (bisect (rpt bisect n (under, over))) = under_seq n, by
rewrite [↑under_seq, ↑bisect at {2}, -succ_helper at Hub, if_pos Hub], rewrite [↑under_seq, ↑bisect at {2}, -succ_helper at Hub, if_pos Hub],
@ -736,7 +734,7 @@ theorem under_succ (n : ) : under_seq (succ n) =
theorem over_succ (n : ) : over_seq (succ n) = theorem over_succ (n : ) : over_seq (succ n) =
(if ub (avg_seq n) then avg_seq n else over_seq n) := (if ub (avg_seq n) then avg_seq n else over_seq n) :=
begin begin
cases (em (ub (avg_seq n))) with [Hub, Hub], cases em (ub (avg_seq n)) with [Hub, Hub],
rewrite [if_pos Hub], rewrite [if_pos Hub],
have H : pr2 (bisect (rpt bisect n (under, over))) = avg_seq n, by have H : pr2 (bisect (rpt bisect n (under, over))) = avg_seq n, by
rewrite [↑bisect at {2}, -succ_helper at Hub, if_pos Hub, avg_symm], rewrite [↑bisect at {2}, -succ_helper at Hub, if_pos Hub, avg_symm],
@ -757,7 +755,7 @@ theorem width (n : ) : over_seq n - under_seq n = (over - under) / (rat.pow 2
(over_seq a) / 2 - (under_seq a) / 2 = ((over - under) / rat.pow 2 a) / 2 : by rewrite [rat.div_sub_div_same, Ha] (over_seq a) / 2 - (under_seq a) / 2 = ((over - under) / rat.pow 2 a) / 2 : by rewrite [rat.div_sub_div_same, Ha]
... = (over - under) / (rat.pow 2 a * 2) : rat.div_div_eq_div_mul (rat.ne_of_gt (rat.pow_pos dec_trivial _)) dec_trivial ... = (over - under) / (rat.pow 2 a * 2) : rat.div_div_eq_div_mul (rat.ne_of_gt (rat.pow_pos dec_trivial _)) dec_trivial
... = (over - under) / rat.pow 2 (a + 1) : by rewrite rat.pow_add, ... = (over - under) / rat.pow 2 (a + 1) : by rewrite rat.pow_add,
cases (em (ub (avg_seq a))), cases em (ub (avg_seq a)),
rewrite [*if_pos a_1, -add_one, -Hou, ↑avg_seq, ↑avg, rat.add.assoc, rat.div_two_sub_self], rewrite [*if_pos a_1, -add_one, -Hou, ↑avg_seq, ↑avg, rat.add.assoc, rat.div_two_sub_self],
rewrite [*if_neg a_1, -add_one, -Hou, ↑avg_seq, ↑avg, rat.sub_add_eq_sub_sub, rat.sub_self_div_two] rewrite [*if_neg a_1, -add_one, -Hou, ↑avg_seq, ↑avg, rat.sub_add_eq_sub_sub, rat.sub_self_div_two]
end) end)
@ -825,7 +823,7 @@ theorem PA (n : ) : ¬ ub (under_seq n) :=
(begin (begin
intro a Ha, intro a Ha,
rewrite under_succ, rewrite under_succ,
cases (em (ub (avg_seq a))), cases em (ub (avg_seq a)),
rewrite (if_pos a_1), rewrite (if_pos a_1),
assumption, assumption,
rewrite (if_neg a_1), rewrite (if_neg a_1),
@ -838,7 +836,7 @@ theorem PB (n : ) : ub (over_seq n) :=
(begin (begin
intro a Ha, intro a Ha,
rewrite over_succ, rewrite over_succ,
cases (em (ub (avg_seq a))), cases em (ub (avg_seq a)),
rewrite (if_pos a_1), rewrite (if_pos a_1),
assumption, assumption,
rewrite (if_neg a_1), rewrite (if_neg a_1),
@ -847,8 +845,8 @@ theorem PB (n : ) : ub (over_seq n) :=
theorem under_lt_over : under < over := theorem under_lt_over : under < over :=
begin begin
cases (exists_not_of_not_forall under_spec) with [x, Hx], cases exists_not_of_not_forall under_spec with [x, Hx],
cases ((iff.mp not_implies_iff_and_not) Hx) with [HXx, Hxu], cases iff.mp not_implies_iff_and_not Hx with [HXx, Hxu],
apply lt_of_rat_lt_of_rat, apply lt_of_rat_lt_of_rat,
apply lt_of_lt_of_le, apply lt_of_lt_of_le,
apply lt_of_not_ge Hxu, apply lt_of_not_ge Hxu,
@ -858,8 +856,8 @@ theorem under_lt_over : under < over :=
theorem under_seq_lt_over_seq : ∀ m n : , under_seq m < over_seq n := theorem under_seq_lt_over_seq : ∀ m n : , under_seq m < over_seq n :=
begin begin
intros, intros,
cases (exists_not_of_not_forall (PA m)) with [x, Hx], cases exists_not_of_not_forall (PA m) with [x, Hx],
cases ((iff.mp not_implies_iff_and_not) Hx) with [HXx, Hxu], cases (iff.mp not_implies_iff_and_not) Hx with [HXx, Hxu],
apply lt_of_rat_lt_of_rat, apply lt_of_rat_lt_of_rat,
apply lt_of_lt_of_le, apply lt_of_lt_of_le,
apply lt_of_not_ge Hxu, apply lt_of_not_ge Hxu,
@ -882,7 +880,7 @@ theorem under_seq_mono_helper (i k : ) : under_seq i ≤ under_seq (i + k) :=
(begin (begin
intros a Ha, intros a Ha,
rewrite [add_succ, under_succ], rewrite [add_succ, under_succ],
cases (em (ub (avg_seq (i + a)))) with [Havg, Havg], cases em (ub (avg_seq (i + a))) with [Havg, Havg],
rewrite (if_pos Havg), rewrite (if_pos Havg),
apply Ha, apply Ha,
rewrite [if_neg Havg, ↑avg_seq, ↑avg], rewrite [if_neg Havg, ↑avg_seq, ↑avg],
@ -909,7 +907,7 @@ theorem over_seq_mono_helper (i k : ) : over_seq (i + k) ≤ over_seq i :=
(begin (begin
intros a Ha, intros a Ha,
rewrite [add_succ, over_succ], rewrite [add_succ, over_succ],
cases (em (ub (avg_seq (i + a)))) with [Havg, Havg], cases em (ub (avg_seq (i + a))) with [Havg, Havg],
rewrite [if_pos Havg, ↑avg_seq, ↑avg], rewrite [if_pos Havg, ↑avg_seq, ↑avg],
apply rat.le.trans, apply rat.le.trans,
rotate 1, rotate 1,
@ -940,8 +938,8 @@ theorem regular_lemma_helper {s : seq} {m n : +} (Hm : m ≤ n)
(H : ∀ n i : +, i ≥ n → under_seq' n~ ≤ s i ∧ s i ≤ over_seq' n~) : (H : ∀ n i : +, i ≥ n → under_seq' n~ ≤ s i ∧ s i ≤ over_seq' n~) :
rat.abs (s m - s n) ≤ m⁻¹ + n⁻¹ := rat.abs (s m - s n) ≤ m⁻¹ + n⁻¹ :=
begin begin
cases (H m n Hm) with [T1under, T1over], cases H m n Hm with [T1under, T1over],
cases (H m m (!pnat.le.refl)) with [T2under, T2over], cases H m m (!pnat.le.refl) with [T2under, T2over],
apply rat.le.trans, apply rat.le.trans,
apply rat.dist_bdd_within_interval, apply rat.dist_bdd_within_interval,
apply under_seq'_lt_over_seq'_single, apply under_seq'_lt_over_seq'_single,
@ -960,7 +958,7 @@ theorem regular_lemma (s : seq) (H : ∀ n i : +, i ≥ n → under_seq' n~
begin begin
rewrite ↑regular, rewrite ↑regular,
intros, intros,
cases (em (m ≤ n)) with [Hm, Hn], cases em (m ≤ n) with [Hm, Hn],
apply regular_lemma_helper Hm H, apply regular_lemma_helper Hm H,
let T := regular_lemma_helper (pnat.le_of_lt (pnat.lt_of_not_le Hn)) H, let T := regular_lemma_helper (pnat.le_of_lt (pnat.lt_of_not_le Hn)) H,
rewrite [rat.abs_sub at T, {n⁻¹ + _}rat.add.comm at T], rewrite [rat.abs_sub at T, {n⁻¹ + _}rat.add.comm at T],
@ -1012,8 +1010,8 @@ theorem under_lowest_bound : ∀ y : , ub y → sup_under ≤ y :=
intros y Hy, intros y Hy,
apply le_of_reprs_le, apply le_of_reprs_le,
intro n, intro n,
cases (exists_not_of_not_forall (PA _)) with [x, Hx], cases exists_not_of_not_forall (PA _) with [x, Hx],
cases (iff.mp not_implies_iff_and_not Hx) with [HXx, Hxn], cases iff.mp not_implies_iff_and_not Hx with [HXx, Hxn],
apply le.trans, apply le.trans,
apply le_of_lt, apply le_of_lt,
apply lt_of_not_ge Hxn, apply lt_of_not_ge Hxn,
@ -1042,4 +1040,35 @@ theorem ex_sup_of_inh_of_bdd : ∃ x : , sup x :=
end supremum end supremum
definition bounding_set (X : → Prop) (x : ) : Prop := ∀ y : , X y → x ≤ y
theorem ex_inf_of_inh_of_bdd (X : → Prop) (elt : ) (inh : X elt) (bound : )
(bdd : lb X bound) : ∃ x : , inf X x :=
begin
have Hinh : bounding_set X bound, begin
intros y Hy,
apply bdd,
apply Hy
end,
have Hub : ub (bounding_set X) elt, begin
intros y Hy,
apply Hy,
apply inh
end,
cases ex_sup_of_inh_of_bdd _ _ Hinh _ Hub with [supr, Hsupr],
existsi supr,
cases Hsupr with [Hubs1, Hubs2],
apply and.intro,
intros,
apply Hubs2,
intros z Hz,
apply Hz,
apply a,
intros y Hlby,
apply Hubs1,
intros z Hz,
apply Hlby,
apply Hz
end
end real end real