From ba78cc42f9df36e462c44a1651deeeec51d27b25 Mon Sep 17 00:00:00 2001 From: Jeremy Avigad Date: Fri, 8 May 2015 10:43:36 +1000 Subject: [PATCH] fix(library/data/set/basic.lean, function.lean): fix typos --- library/data/set/basic.lean | 4 ++-- library/data/set/function.lean | 2 +- 2 files changed, 3 insertions(+), 3 deletions(-) diff --git a/library/data/set/basic.lean b/library/data/set/basic.lean index a5316422e..690a2a252 100644 --- a/library/data/set/basic.lean +++ b/library/data/set/basic.lean @@ -54,7 +54,7 @@ theorem mem_univ (x : T) : x ∈ univ := trivial definition inter [reducible] (a b : set T) : set T := λx, x ∈ a ∧ x ∈ b notation a ∩ b := inter a b -theorem mem_inter (x : T) (a b : set T) : x ∈ a ∩ b ↔ (x ∈ a ∧ x ∈ b) := !iff.refl +theorem mem_inter (x : T) (a b : set T) : x ∈ a ∩ b ↔ x ∈ a ∧ x ∈ b := !iff.refl theorem inter_self (a : set T) : a ∩ a = a := setext (take x, !and_self) @@ -76,7 +76,7 @@ setext (take x, !and.assoc) definition union [reducible] (a b : set T) : set T := λx, x ∈ a ∨ x ∈ b notation a ∪ b := union a b -theorem mem_union (x : T) (a b : set T) : x ∈ a ∪ b ↔ (x ∈ a ∨ x ∈ b) := !iff.refl +theorem mem_union (x : T) (a b : set T) : x ∈ a ∪ b ↔ x ∈ a ∨ x ∈ b := !iff.refl theorem union_self (a : set T) : a ∪ a = a := setext (take x, !or_self) diff --git a/library/data/set/function.lean b/library/data/set/function.lean index a59b602ee..8012e0f54 100644 --- a/library/data/set/function.lean +++ b/library/data/set/function.lean @@ -41,7 +41,7 @@ theorem in_image {f : X → Y} {a : set X} {x : X} {y : Y} (H1 : x ∈ a) (H2 : f x = y) : y ∈ f '[a] := exists.intro x (and.intro H1 H2) -lemma image_compose (f : Y → X) (g : X → Y) (a : set X) : (f ∘ g) '[a] = f '[g '[a]] := +lemma image_compose (f : Y → Z) (g : X → Y) (a : set X) : (f ∘ g) '[a] = f '[g '[a]] := setext (take z, iff.intro (assume Hz : z ∈ (f ∘ g) '[a],