fix(library/data/set/basic.lean, function.lean): fix typos
This commit is contained in:
parent
0b57f7d00a
commit
ba78cc42f9
2 changed files with 3 additions and 3 deletions
|
@ -54,7 +54,7 @@ theorem mem_univ (x : T) : x ∈ univ := trivial
|
||||||
definition inter [reducible] (a b : set T) : set T := λx, x ∈ a ∧ x ∈ b
|
definition inter [reducible] (a b : set T) : set T := λx, x ∈ a ∧ x ∈ b
|
||||||
notation a ∩ b := inter a b
|
notation a ∩ b := inter a b
|
||||||
|
|
||||||
theorem mem_inter (x : T) (a b : set T) : x ∈ a ∩ b ↔ (x ∈ a ∧ x ∈ b) := !iff.refl
|
theorem mem_inter (x : T) (a b : set T) : x ∈ a ∩ b ↔ x ∈ a ∧ x ∈ b := !iff.refl
|
||||||
|
|
||||||
theorem inter_self (a : set T) : a ∩ a = a :=
|
theorem inter_self (a : set T) : a ∩ a = a :=
|
||||||
setext (take x, !and_self)
|
setext (take x, !and_self)
|
||||||
|
@ -76,7 +76,7 @@ setext (take x, !and.assoc)
|
||||||
definition union [reducible] (a b : set T) : set T := λx, x ∈ a ∨ x ∈ b
|
definition union [reducible] (a b : set T) : set T := λx, x ∈ a ∨ x ∈ b
|
||||||
notation a ∪ b := union a b
|
notation a ∪ b := union a b
|
||||||
|
|
||||||
theorem mem_union (x : T) (a b : set T) : x ∈ a ∪ b ↔ (x ∈ a ∨ x ∈ b) := !iff.refl
|
theorem mem_union (x : T) (a b : set T) : x ∈ a ∪ b ↔ x ∈ a ∨ x ∈ b := !iff.refl
|
||||||
|
|
||||||
theorem union_self (a : set T) : a ∪ a = a :=
|
theorem union_self (a : set T) : a ∪ a = a :=
|
||||||
setext (take x, !or_self)
|
setext (take x, !or_self)
|
||||||
|
|
|
@ -41,7 +41,7 @@ theorem in_image {f : X → Y} {a : set X} {x : X} {y : Y}
|
||||||
(H1 : x ∈ a) (H2 : f x = y) : y ∈ f '[a] :=
|
(H1 : x ∈ a) (H2 : f x = y) : y ∈ f '[a] :=
|
||||||
exists.intro x (and.intro H1 H2)
|
exists.intro x (and.intro H1 H2)
|
||||||
|
|
||||||
lemma image_compose (f : Y → X) (g : X → Y) (a : set X) : (f ∘ g) '[a] = f '[g '[a]] :=
|
lemma image_compose (f : Y → Z) (g : X → Y) (a : set X) : (f ∘ g) '[a] = f '[g '[a]] :=
|
||||||
setext (take z,
|
setext (take z,
|
||||||
iff.intro
|
iff.intro
|
||||||
(assume Hz : z ∈ (f ∘ g) '[a],
|
(assume Hz : z ∈ (f ∘ g) '[a],
|
||||||
|
|
Loading…
Reference in a new issue