feat(library/tactic): add disj_hyp_tactic

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2013-12-01 07:12:34 -08:00
parent 6a6b69ddf4
commit bf2adb20e7
4 changed files with 176 additions and 0 deletions

View file

@ -156,6 +156,90 @@ tactic conj_hyp_tactic(bool all) {
});
}
optional<proof_state> disj_hyp_tactic_core(name const & goal_name, name const & hyp_name, proof_state const & s) {
buffer<std::pair<name, goal>> new_goals_buf;
expr H;
expr conclusion;
for (auto const & p1 : s.get_goals()) {
check_interrupted();
if (p1.first == goal_name) {
goal const & g = p1.second;
buffer<hypothesis> new_hyp_buf1;
buffer<hypothesis> new_hyp_buf2;
conclusion = g.get_conclusion();
for (auto const & p2 : g.get_hypotheses()) {
if (p2.first == hyp_name) {
H = p2.second;
if (!is_or(H))
return none_proof_state(); // tactic failed
new_hyp_buf1.emplace_back(p2.first, arg(H, 1));
new_hyp_buf2.emplace_back(p2.first, arg(H, 2));
} else {
new_hyp_buf1.push_back(p2);
new_hyp_buf2.push_back(p2);
}
}
if (!H)
return none_proof_state(); // tactic failed
new_goals_buf.emplace_back(name(goal_name, 1), update(g, new_hyp_buf1));
new_goals_buf.emplace_back(name(goal_name, 2), update(g, new_hyp_buf2));
} else {
new_goals_buf.push_back(p1);
}
}
if (!H)
return none_proof_state(); // tactic failed
goals new_gs = to_list(new_goals_buf.begin(), new_goals_buf.end());
proof_builder pb = s.get_proof_builder();
proof_builder new_pb = mk_proof_builder([=](proof_map const & m, assignment const & a) -> expr {
proof_map new_m(m);
expr pr1 = find(m, name(goal_name, 1));
expr pr2 = find(m, name(goal_name, 2));
pr1 = Fun(hyp_name, arg(H, 1), pr1);
pr2 = Fun(hyp_name, arg(H, 2), pr2);
new_m.insert(goal_name, DisjCases(arg(H, 1), arg(H, 2), conclusion, mk_constant(hyp_name), pr1, pr2));
new_m.erase(name(goal_name, 1));
new_m.erase(name(goal_name, 2));
return pb(new_m, a);
});
return some_proof_state(s, new_gs, new_pb);
}
tactic disj_hyp_tactic(name const & goal_name, name const & hyp_name) {
return mk_tactic01([=](environment const &, io_state const &, proof_state const & s) -> optional<proof_state> {
return disj_hyp_tactic_core(goal_name, hyp_name, s);
});
}
tactic disj_hyp_tactic(name const & hyp_name) {
return mk_tactic01([=](environment const &, io_state const &, proof_state const & s) -> optional<proof_state> {
for (auto const & p1 : s.get_goals()) {
check_interrupted();
goal const & g = p1.second;
for (auto const & p2 : g.get_hypotheses()) {
if (p2.first == hyp_name)
return disj_hyp_tactic_core(p1.first, hyp_name, s);
}
}
return none_proof_state(); // tactic failed
});
}
tactic disj_hyp_tactic() {
return mk_tactic01([=](environment const &, io_state const &, proof_state const & s) -> optional<proof_state> {
for (auto const & p1 : s.get_goals()) {
check_interrupted();
goal const & g = p1.second;
for (auto const & p2 : g.get_hypotheses()) {
if (is_or(p2.second))
return disj_hyp_tactic_core(p1.first, p2.first, s);
}
}
return none_proof_state(); // tactic failed
});
}
static int mk_conj_tactic(lua_State * L) {
int nargs = lua_gettop(L);
return push_tactic(L, conj_tactic(nargs == 0 ? true : lua_toboolean(L, 1)));
@ -171,9 +255,20 @@ static int mk_conj_hyp_tactic(lua_State * L) {
return push_tactic(L, conj_hyp_tactic(nargs == 0 ? true : lua_toboolean(L, 1)));
}
static int mk_disj_hyp_tactic(lua_State * L) {
int nargs = lua_gettop(L);
if (nargs == 0)
return push_tactic(L, disj_hyp_tactic());
else if (nargs == 1)
return push_tactic(L, disj_hyp_tactic(to_name_ext(L, 1)));
else
return push_tactic(L, disj_hyp_tactic(to_name_ext(L, 1), to_name_ext(L, 2)));
}
void open_boolean(lua_State * L) {
SET_GLOBAL_FUN(mk_conj_tactic, "conj_tactic");
SET_GLOBAL_FUN(mk_imp_tactic, "imp_tactic");
SET_GLOBAL_FUN(mk_conj_hyp_tactic, "conj_hyp_tactic");
SET_GLOBAL_FUN(mk_disj_hyp_tactic, "disj_hyp_tactic");
}
}

View file

@ -10,5 +10,8 @@ namespace lean {
tactic conj_tactic(bool all = true);
tactic conj_hyp_tactic(bool all = true);
tactic imp_tactic(name const & H_name = name("H"), bool all = true);
tactic disj_hyp_tactic(name const & goal_name, name const & hyp_name);
tactic disj_hyp_tactic(name const & hyp_name);
tactic disj_hyp_tactic();
void open_boolean(lua_State * L);
}

50
tests/lean/tactic7.lean Normal file
View file

@ -0,0 +1,50 @@
Variable Eq {A : Type U+1} (a b : A) : Bool
Infix 50 === : Eq
Axiom EqSubst {A : Type U+1} {a b : A} (P : A -> Bool) (H1 : P a) (H2 : a === b) : P b
Axiom EqRefl {A : Type U+1} (a : A) : a === a
Theorem EqSymm {A : Type U+1} {a b : A} (H : a === b) : b === a :=
EqSubst (fun x, x === a) (EqRefl a) H
Theorem EqTrans {A : Type U+1} {a b c : A} (H1 : a === b) (H2 : b === c) : a === c :=
EqSubst (fun x, a === x) H1 H2
Theorem EqCongr {A B : Type U+1} (f : A -> B) {a b : A} (H : a === b) : (f a) === (f b) :=
EqSubst (fun x, (f a) === (f x)) (EqRefl (f a)) H
Theorem EqCongr1 {A : Type U+1} {B : A -> Type U+1} {f g : Pi x : A, B x} (a : A) (H : f === g) : (f a) === (g a) :=
EqSubst (fun h : (Pi x : A, B x), (f a) === (h a)) (EqRefl (f a)) H
Axiom ProofIrrelevance (P : Bool) (pr1 pr2 : P) : pr1 === pr2
Axiom EqCast {A B : Type U} (H : A === B) (a : A) : B
Axiom EqCastHom {A B : Type U} {a1 a2 : A} (HAB : A === B) (H : a1 === a2) : (EqCast HAB a1) === (EqCast HAB a2)
Axiom EqCastRefl {A : Type U} (a : A) : (EqCast (EqRefl A) a) === a
Variable Vector : (Type U) -> Nat -> (Type U)
Variable empty {A : Type U} : Vector A 0
Variable append {A : Type U} {m n : Nat} (v1 : Vector A m) (v2 : Vector A n) : Vector A (m + n)
Axiom Plus0 (n : Nat) : (n + 0) === n
Theorem VectorPlus0 (A : Type U) (n : Nat) : (Vector A (n + 0)) === (Vector A n) :=
EqSubst (fun x : Nat, (Vector A x) === (Vector A n))
(EqRefl (Vector A n))
(EqSymm (Plus0 n))
Set pp::implicit true
(* Check fun (A : Type) (n : Nat), VectorPlus0 A n *)
Axiom AppendNil {A : Type} {n : Nat} (v : Vector A n) : (EqCast (VectorPlus0 A n) (append v empty)) === v
Variable List : Type U -> Type U.
Variables A B : Type U
Axiom H1 : A === B.
Theorem LAB : (List A) === (List B) :=
EqCongr List H1
Variable l1 : List A
Variable l2 : List B
Variable H2 : (EqCast LAB l1) == l2
(*
Theorem EqCastInv {A B : Type U} (H : A === B) (a : A) : (EqCast (EqSymm H) (EqCast H a)) === a :=
*)
(*
Variable ReflCast : Pi (A : Type U) (a : A) (H : Eq (Type U) A A), Eq A (Casting A A H a) a
Theorem AppEq (A : Type U) (B : A -> Type U) (a b : A) (H : Eq A a b) : (Eq (Type U) (B b) (B a)) :=
EqCongr A (Type U) B b a (EqSymm A a b H)
Theorem EqCongr2 (A : Type U) (B : A -> Type U) (f : Pi x : A, B x) (a b : A) (H : Eq A a b) : Eq (B a) (f a) (Casting (B b) (B a) (AppEq A B a b H) (f a)) (f b) :=
EqSubst (B a) a b (fun x : A, Eq (B a) (f a) (Casting (B x) (B a) (AppEq A B a b H) (f a)) (f x)
*)

View file

@ -0,0 +1,28 @@
Set: pp::colors
Set: pp::unicode
Assumed: Eq
Assumed: EqSubst
Assumed: EqRefl
Proved: EqSymm
Proved: EqTrans
Proved: EqCongr
Proved: EqCongr1
Assumed: ProofIrrelevance
Assumed: EqCast
Assumed: EqCastHom
Assumed: EqCastRefl
Assumed: Vector
Assumed: empty
Assumed: append
Assumed: Plus0
Proved: VectorPlus0
Set: lean::pp::implicit
Assumed: AppendNil
Assumed: List
Assumed: A
Assumed: B
Assumed: H1
Proved: LAB
Assumed: l1
Assumed: l2
Assumed: H2