feat(library/data/rat): show that the rationals are encodable and countable

This commit is contained in:
Leonardo de Moura 2015-08-12 21:30:03 -07:00
parent 710b7b6e40
commit bf65acb126

View file

@ -0,0 +1,47 @@
/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
-/
import data.rat.basic data.countable data.encodable data.int.countable
open encodable nat int option quot
namespace rat
definition encode_prerat : prerat → nat
| (prerat.mk n d h) := mkpair (encode n) (encode d)
definition decode_prerat (a : nat) : option prerat :=
match unpair a with
| (cn, cd) :=
match decode int cn with
| some n :=
match decode int cd with
| some d := if h : d > 0 then some (prerat.mk n d h) else none
| none := none
end
| none := none
end
end
lemma decode_encode_prerat (p : prerat) : decode_prerat (encode_prerat p) = some p :=
begin
cases p with n d h, unfold [encode_prerat, decode_prerat],
rewrite unpair_mkpair, esimp, rewrite [*encodek, dif_pos h]
end
definition encodable_prerat [instance] : encodable prerat :=
encodable.mk
encode_prerat
decode_prerat
decode_encode_prerat
definition decidable_equiv [instance] : ∀ a b : prerat, decidable (prerat.equiv a b)
| (prerat.mk n₁ d₁ h₁) (prerat.mk n₂ d₂ h₂) := begin unfold prerat.equiv, exact _ end
definition encodable_rat [instance] : encodable rat :=
@encodable_quot _ _ decidable_equiv encodable_prerat
lemma countable_rat : countable rat :=
countable_of_encodable encodable_rat
end rat