Add Cast, DomInj and RanInj. Improve operator << for lean_frontend objects.

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2013-09-06 18:31:47 -07:00
parent b62816cc25
commit c0c2f52087
8 changed files with 107 additions and 1 deletions

View file

@ -75,12 +75,15 @@ void init_builtin_notation(frontend & f) {
f.add_coercion(mk_nat_to_real_fn()); f.add_coercion(mk_nat_to_real_fn());
// implicit arguments for builtin axioms // implicit arguments for builtin axioms
f.mark_implicit_arguments(mk_cast_fn(), {true, true, false, false});
f.mark_implicit_arguments(mk_mp_fn(), {true, true, false, false}); f.mark_implicit_arguments(mk_mp_fn(), {true, true, false, false});
f.mark_implicit_arguments(mk_discharge_fn(), {true, true, false}); f.mark_implicit_arguments(mk_discharge_fn(), {true, true, false});
f.mark_implicit_arguments(mk_refl_fn(), {true, false}); f.mark_implicit_arguments(mk_refl_fn(), {true, false});
f.mark_implicit_arguments(mk_subst_fn(), {true, true, true, false, false, false}); f.mark_implicit_arguments(mk_subst_fn(), {true, true, true, false, false, false});
f.mark_implicit_arguments(mk_eta_fn(), {true, true, false}); f.mark_implicit_arguments(mk_eta_fn(), {true, true, false});
f.mark_implicit_arguments(mk_imp_antisym_fn(), {true, true, false, false}); f.mark_implicit_arguments(mk_imp_antisym_fn(), {true, true, false, false});
f.mark_implicit_arguments(mk_dom_inj_fn(), {true, true, true, true, false});
f.mark_implicit_arguments(mk_ran_inj_fn(), {true, true, true, true, false, false});
// implicit arguments for basic theorems // implicit arguments for basic theorems
f.mark_implicit_arguments(mk_absurd_fn(), {true, false, false}); f.mark_implicit_arguments(mk_absurd_fn(), {true, false, false});

View file

@ -1291,7 +1291,13 @@ formatter mk_pp_formatter(frontend const & fe) {
std::ostream & operator<<(std::ostream & out, frontend const & fe) { std::ostream & operator<<(std::ostream & out, frontend const & fe) {
options const & opts = fe.get_state().get_options(); options const & opts = fe.get_state().get_options();
formatter fmt = mk_pp_formatter(fe); formatter fmt = mk_pp_formatter(fe);
out << mk_pair(fmt(fe, opts), opts); bool first = true;
std::for_each(fe.begin_objects(),
fe.end_objects(),
[&](object const & obj) {
if (first) first = false; else out << "\n";
out << mk_pair(fmt(obj, opts), opts);
});
return out; return out;
} }
} }

View file

@ -149,6 +149,7 @@ MK_CONSTANT(not_fn, name("not"));
MK_CONSTANT(forall_fn, name("forall")); MK_CONSTANT(forall_fn, name("forall"));
MK_CONSTANT(exists_fn, name("exists")); MK_CONSTANT(exists_fn, name("exists"));
MK_CONSTANT(homo_eq_fn, name("heq")); MK_CONSTANT(homo_eq_fn, name("heq"));
MK_CONSTANT(cast_fn, name("cast"));
// Axioms // Axioms
MK_CONSTANT(mp_fn, name("MP")); MK_CONSTANT(mp_fn, name("MP"));
@ -158,6 +159,8 @@ MK_CONSTANT(case_fn, name("Case"));
MK_CONSTANT(subst_fn, name("Subst")); MK_CONSTANT(subst_fn, name("Subst"));
MK_CONSTANT(eta_fn, name("Eta")); MK_CONSTANT(eta_fn, name("Eta"));
MK_CONSTANT(imp_antisym_fn, name("ImpAntisym")); MK_CONSTANT(imp_antisym_fn, name("ImpAntisym"));
MK_CONSTANT(dom_inj_fn, name("DomInj"));
MK_CONSTANT(ran_inj_fn, name("RanInj"));
void add_basic_theory(environment & env) { void add_basic_theory(environment & env) {
env.add_uvar(uvar_name(m_lvl), level() + LEAN_DEFAULT_LEVEL_SEPARATION); env.add_uvar(uvar_name(m_lvl), level() + LEAN_DEFAULT_LEVEL_SEPARATION);
@ -171,10 +174,13 @@ void add_basic_theory(environment & env) {
expr x = Const("x"); expr x = Const("x");
expr y = Const("y"); expr y = Const("y");
expr A = Const("A"); expr A = Const("A");
expr Ap = Const("A'");
expr A_pred = A >> Bool; expr A_pred = A >> Bool;
expr B = Const("B"); expr B = Const("B");
expr Bp = Const("B'");
expr q_type = Pi({A, TypeU}, A_pred >> Bool); expr q_type = Pi({A, TypeU}, A_pred >> Bool);
expr piABx = Pi({x, A}, B(x)); expr piABx = Pi({x, A}, B(x));
expr piApBpx = Pi({x, Ap}, Bp(x));
expr A_arrow_u = A >> TypeU; expr A_arrow_u = A >> TypeU;
expr P = Const("P"); expr P = Const("P");
expr H = Const("H"); expr H = Const("H");
@ -209,6 +215,9 @@ void add_basic_theory(environment & env) {
// homogeneous equality // homogeneous equality
env.add_definition(homo_eq_fn_name, Pi({{A,TypeU},{x,A},{y,A}}, Bool), Fun({{A,TypeU}, {x,A}, {y,A}}, Eq(x, y))); env.add_definition(homo_eq_fn_name, Pi({{A,TypeU},{x,A},{y,A}}, Bool), Fun({{A,TypeU}, {x,A}, {y,A}}, Eq(x, y)));
// Cast: Pi (A : Type u) (B : Type u) (H : A = B) (a : A), B
env.add_var(cast_fn_name, Pi({{A, TypeU}, {B, TypeU}, {H, Eq(A,B)}, {a, A}}, B));
// MP : Pi (a b : Bool) (H1 : a => b) (H2 : a), b // MP : Pi (a b : Bool) (H1 : a => b) (H2 : a), b
env.add_axiom(mp_fn_name, Pi({{a, Bool}, {b, Bool}, {H1, Implies(a, b)}, {H2, a}}, b)); env.add_axiom(mp_fn_name, Pi({{a, Bool}, {b, Bool}, {H1, Implies(a, b)}, {H2, a}}, b));
@ -229,5 +238,13 @@ void add_basic_theory(environment & env) {
// ImpliesAntisym : Pi (a b : Bool) (H1 : a => b) (H2 : b => a), a = b // ImpliesAntisym : Pi (a b : Bool) (H1 : a => b) (H2 : b => a), a = b
env.add_axiom(imp_antisym_fn_name, Pi({{a, Bool}, {b, Bool}, {H1, Implies(a, b)}, {H2, Implies(b, a)}}, Eq(a, b))); env.add_axiom(imp_antisym_fn_name, Pi({{a, Bool}, {b, Bool}, {H1, Implies(a, b)}, {H2, Implies(b, a)}}, Eq(a, b)));
// DomInj : Pi (A A': Type u) (B : A -> Type u) (B' : A' -> Type u) (H : (Pi x : A, B x) = (Pi x : A', B' x)), A = A'
env.add_axiom(dom_inj_fn_name, Pi({{A, TypeU}, {Ap, TypeU}, {B, A >> TypeU}, {Bp, Ap >> TypeU}, {H, Eq(piABx, piApBpx)}}, Eq(A, Ap)));
// RanInj : Pi (A A': Type u) (B : A -> Type u) (B' : A' -> Type u) (H : (Pi x : A, B x) = (Pi x : A', B' x)) (a : A),
// B a = B' (cast A A' (DomInj A A' B B' H) a)
env.add_axiom(ran_inj_fn_name, Pi({{A, TypeU}, {Ap, TypeU}, {B, A >> TypeU}, {Bp, Ap >> TypeU}, {H, Eq(piABx, piApBpx)}, {a, A}},
Eq(B(a), Bp(Cast(A, Ap, DomInj(A, Ap, B, Bp, H), a)))));
} }
} }

View file

@ -113,6 +113,12 @@ expr mk_homo_eq_fn();
inline expr mk_homo_eq(expr const & A, expr const & l, expr const & r) { return mk_app(mk_homo_eq_fn(), A, l, r); } inline expr mk_homo_eq(expr const & A, expr const & l, expr const & r) { return mk_app(mk_homo_eq_fn(), A, l, r); }
inline expr hEq(expr const & A, expr const & l, expr const & r) { return mk_homo_eq(A, l, r); } inline expr hEq(expr const & A, expr const & l, expr const & r) { return mk_homo_eq(A, l, r); }
/** \brief Type Cast. It has type <tt>Pi (A : Type u) (B : Type u) (H : A = B) (a : A), B</tt> */
expr mk_cast_fn();
/** \brief Return the term (cast A B H a) */
inline expr mk_cast(expr const & A, expr const & B, expr const & H, expr const & a) { return mk_app(mk_cast_fn(), A, B, H, a); }
inline expr Cast(expr const & A, expr const & B, expr const & H, expr const & a) { return mk_cast(A, B, H, a); }
/** \brief Modus Ponens axiom */ /** \brief Modus Ponens axiom */
expr mk_mp_fn(); expr mk_mp_fn();
/** \brief (Axiom) {a : Bool}, {b : Bool}, H1 : a => b, H2 : a |- MP(a, b, H1, H2) : b */ /** \brief (Axiom) {a : Bool}, {b : Bool}, H1 : a => b, H2 : a |- MP(a, b, H1, H2) : b */
@ -148,6 +154,20 @@ expr mk_imp_antisym_fn();
/** \brief (Axiom) {a : Bool}, {b : Bool}, H1 : a => b, H2 : b => a |- ImpAntisym(a, b, H1, H2) : a = b */ /** \brief (Axiom) {a : Bool}, {b : Bool}, H1 : a => b, H2 : b => a |- ImpAntisym(a, b, H1, H2) : a = b */
inline expr ImpAntisym(expr const & a, expr const & b, expr const & H1, expr const & H2) { return mk_app(mk_imp_antisym_fn(), a, b, H1, H2); } inline expr ImpAntisym(expr const & a, expr const & b, expr const & H1, expr const & H2) { return mk_app(mk_imp_antisym_fn(), a, b, H1, H2); }
/** \brief Domain Injectivity. It has type <tt>Pi (A A': Type u) (B : A -> Type u) (B' : A' -> Type u) (H : (Pi x : A, B x) = (Pi x : A', B' x)), A = A' </tt> */
expr mk_dom_inj_fn();
/** \brief Return the term (DomInj A A' B B' H) */
inline expr mk_dom_inj(expr const & A, expr const & Ap, expr const & B, expr const & Bp, expr const & H) { return mk_app({mk_dom_inj_fn(), A, Ap, B, Bp, H}); }
inline expr DomInj(expr const & A, expr const & Ap, expr const & B, expr const & Bp, expr const & H) { return mk_dom_inj(A, Ap, B, Bp, H); }
/** \brief Range Injectivity. It has type <tt>Pi (A A': Type u) (B : A -> Type u) (B' : A' -> Type u) (H : (Pi x : A, B x) = (Pi x : A', B' x)) (a : A),
B a = B' (cast A A' (DomInj A A' B B' H) a)</tt>
*/
expr mk_ran_inj_fn();
/** \brief Return the term (RanInj A A' B B' H) */
inline expr mk_ran_inj(expr const & A, expr const & Ap, expr const & B, expr const & Bp, expr const & H, expr const & a) { return mk_app({mk_ran_inj_fn(), A, Ap, B, Bp, H, a}); }
inline expr RanInj(expr const & A, expr const & Ap, expr const & B, expr const & Bp, expr const & H, expr const & a) { return mk_ran_inj(A, Ap, B, Bp, H, a); }
class environment; class environment;
/** \brief Initialize the environment with basic builtin declarations and axioms */ /** \brief Initialize the environment with basic builtin declarations and axioms */
void add_basic_theory(environment & env); void add_basic_theory(environment & env);

20
tests/lean/cast1.lean Normal file
View file

@ -0,0 +1,20 @@
Variable vector : Type -> Nat -> Type
Axiom N0 (n : Nat) : n + 0 = n
Theorem V0 (T : Type) (n : Nat) : (vector T (n + 0)) = (vector T n) :=
Congr (Refl (vector T)) (N0 n)
Variable f (n : Nat) (v : vector Int n) : Int
Variable m : Nat
Variable v1 : vector Int (m + 0)
(*
The following application will fail because (vector Int (m + 0)) and (vector Int m)
are not definitionally equal.
*)
Check f m v1
(*
The next one succeeds using the "casting" operator.
We can do it, because (V0 Int m) is a proof that
(vector Int (m + 0)) and (vector Int m) are propositionally equal.
That is, they have the same interpretation in the lean set theoretic
semantics.
*)
Check f m (cast (V0 Int m) v1)

View file

@ -0,0 +1,16 @@
Set: pp::colors
Set: pp::unicode
Assumed: vector
Assumed: N0
Proved: V0
Assumed: f
Assumed: m
Assumed: v1
Error (line: 12, pos: 6) type mismatch at application
f m v1
Function type:
Π (n : ) (v : vector n),
Arguments types:
m :
v1 : vector (m + 0)

11
tests/lean/cast2.lean Normal file
View file

@ -0,0 +1,11 @@
Variable A : Type
Variable B : Type
Variable A' : Type
Variable B' : Type
Axiom H : A -> B = A' -> B'
Variable a : A
Check DomInj H
Theorem BeqB' : B = B' := RanInj H a
Set pp::implicit true
Show DomInj H
Show RanInj H a

View file

@ -0,0 +1,13 @@
Set: pp::colors
Set: pp::unicode
Assumed: A
Assumed: B
Assumed: A'
Assumed: B'
Assumed: H
Assumed: a
A = A'
Proved: BeqB'
Set: lean::pp::implicit
DomInj::explicit A A' (λ x : A, B) (λ x : A', B') H
RanInj::explicit A A' (λ x : A, B) (λ x : A', B') H a