chore(library/theories/group_theory): remove dangling "check"s
This commit is contained in:
parent
9d83361fdc
commit
c0cd72fc8d
2 changed files with 0 additions and 3 deletions
|
@ -36,7 +36,6 @@ definition is_hom (f : A → B) [h : is_hom_class f] : homomorphic f :=
|
|||
@is_hom_class.is_hom A B s1 s2 f h
|
||||
|
||||
definition ker (f : A → B) [h : is_hom_class f] : set A := {a : A | f a = 1}
|
||||
check @ker
|
||||
|
||||
definition isomorphic (f : A → B) := injective f ∧ homomorphic f
|
||||
structure is_iso_class [class] (f : A → B) extends is_hom_class f : Type :=
|
||||
|
@ -174,7 +173,6 @@ lemma ker_map_is_hom : homomorphic (ker_natural_map : coset_of (ker f) → B) :=
|
|||
take aK bK,
|
||||
quot.ind (λ a, quot.ind (λ b, ker_coset_hom a b) bK) aK
|
||||
|
||||
check @subg_in_lcoset_same_lcoset
|
||||
lemma ker_coset_inj (a b : A) : (ker_natural_map ⟦a⟧ = ker_natural_map ⟦b⟧) → ⟦a⟧ = ⟦b⟧ :=
|
||||
assume Pfeq : f a = f b,
|
||||
assert Painb : a ∈ b ∘> ker f, from calc
|
||||
|
|
|
@ -42,7 +42,6 @@ end perm
|
|||
structure perm (A : Type) [h : fintype A] : Type :=
|
||||
(f : A → A) (inj : injective f)
|
||||
local attribute perm.f [coercion]
|
||||
check perm.mk
|
||||
|
||||
section perm
|
||||
variable {A : Type}
|
||||
|
|
Loading…
Reference in a new issue