From c0f862d88a294e985db5a865d7f1e63ab3f48cd0 Mon Sep 17 00:00:00 2001 From: Leonardo de Moura Date: Sun, 20 Jul 2014 21:15:48 -0700 Subject: [PATCH] feat(library/standard): add Diaconescu's theorem Signed-off-by: Leonardo de Moura --- library/standard/diaconescu.lean | 51 ++++++++++++++++++++++++++++++++ 1 file changed, 51 insertions(+) create mode 100644 library/standard/diaconescu.lean diff --git a/library/standard/diaconescu.lean b/library/standard/diaconescu.lean new file mode 100644 index 000000000..e059f085e --- /dev/null +++ b/library/standard/diaconescu.lean @@ -0,0 +1,51 @@ +-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. +-- Released under Apache 2.0 license as described in the file LICENSE. +-- Authors: Leonardo de Moura, Jeremy Avigad +import logic hilbert funext + +-- Diaconescu’s theorem +-- Show that Excluded middle follows from +-- Hilbert's choice operator, function extensionality and Boolean extensionality +section +hypothesis boolext ⦃a b : Bool⦄ : (a → b) → (b → a) → a = b + +parameter p : Bool + +definition u [private] := epsilon (λ x, x = true ∨ p) + +definition v [private] := epsilon (λ x, x = false ∨ p) + +lemma u_def [private] : u = true ∨ p +:= epsilon_ax (exists_intro true (or_intro_left p (refl true))) + +lemma v_def [private] : v = false ∨ p +:= epsilon_ax (exists_intro false (or_intro_left p (refl false))) + +lemma uv_implies_p [private] : ¬(u = v) ∨ p +:= or_elim u_def + (assume Hut : u = true, or_elim v_def + (assume Hvf : v = false, + have Hne : ¬(u = v), from subst (symm Hvf) (subst (symm Hut) true_ne_false), + or_intro_left p Hne) + (assume Hp : p, or_intro_right (¬u = v) Hp)) + (assume Hp : p, or_intro_right (¬u = v) Hp) + +lemma p_implies_uv [private] : p → u = v +:= assume Hp : p, + have Hpred : (λ x, x = true ∨ p) = (λ x, x = false ∨ p), from + funext (take x : Bool, + have Hl : (x = true ∨ p) → (x = false ∨ p), from + assume A, or_intro_right (x = false) Hp, + have Hr : (x = false ∨ p) → (x = true ∨ p), from + assume A, or_intro_right (x = true) Hp, + show (x = true ∨ p) = (x = false ∨ p), from + boolext Hl Hr), + show u = v, from + subst Hpred (refl (epsilon (λ x, x = true ∨ p))) + +theorem em : p ∨ ¬ p +:= have H : ¬(u = v) → ¬ p, from contrapos p_implies_uv, + or_elim uv_implies_p + (assume Hne : ¬(u = v), or_intro_right p (H Hne)) + (assume Hp : p, or_intro_left (¬p) Hp) +end