refactor(library/projection): remove projection macro from library

This commit is contained in:
Leonardo de Moura 2015-07-02 08:48:13 -07:00
parent dd145926a2
commit c15bcf1354
2 changed files with 0 additions and 126 deletions

View file

@ -69,107 +69,6 @@ static void projection_info_reader(deserializer & d, shared_environment & senv,
});
}
static name * g_projection_macro_name = nullptr;
static std::string * g_projection_opcode = nullptr;
class projection_macro_definition_cell : public macro_definition_cell {
name m_proj_name;
void check_macro(expr const & m) const {
if (!is_macro(m) || macro_num_args(m) != 1)
throw exception(sstream() << "invalid '" << m_proj_name
<< "' projection macro, incorrect number of arguments");
}
public:
projection_macro_definition_cell(name const & n):m_proj_name(n) {}
name const & get_proj_name() const { return m_proj_name; }
virtual name get_name() const { return m_proj_name; } // *g_projection_macro_name; }
virtual format pp(formatter const &) const { return format(m_proj_name); }
virtual void display(std::ostream & out) const { out << m_proj_name; }
virtual pair<expr, constraint_seq> check_type(expr const & m, extension_context & ctx, bool infer_only) const {
check_macro(m);
environment const & env = ctx.env();
constraint_seq cs;
expr s = macro_arg(m, 0);
expr s_t = ctx.whnf(ctx.check_type(s, cs, infer_only), cs);
buffer<expr> I_args;
expr const & I = get_app_args(s_t, I_args);
if (is_constant(I)) {
declaration proj_decl = env.get(m_proj_name);
if (length(const_levels(I)) != proj_decl.get_num_univ_params())
throw_kernel_exception(env, sstream() << "invalid projection application '" << m_proj_name
<< "', incorrect number of universe parameters", m);
expr t = instantiate_type_univ_params(proj_decl, const_levels(I));
I_args.push_back(s);
unsigned num = I_args.size();
for (unsigned i = 0; i < num; i++) {
if (!is_pi(t))
throw_kernel_exception(env, sstream() << "invalid projection application '" << m_proj_name
<< "', number of arguments mismatch", m);
t = binding_body(t);
}
return mk_pair(instantiate_rev(t, I_args.size(), I_args.data()), cs);
} else {
// TODO(Leo)
throw_kernel_exception(env, sstream() << "projection macros do not support arbitrary terms "
<< "containing metavariables yet (solution: use trust-level 0)", m);
}
}
// try to unfold projection argument into a \c c constructor application
static optional<expr> process_proj_arg(environment const & env, name const & c, expr const & s) {
if (optional<name> mk_name = is_constructor_app_ext(env, s)) {
if (*mk_name == c) {
expr new_s = s;
while (is_app(new_s) && !is_constructor_app(env, new_s)) {
if (auto next_new_s = unfold_app(env, new_s))
new_s = *next_new_s;
else
return none_expr();
}
if (is_app(new_s))
return some_expr(new_s);
}
}
return none_expr();
}
virtual optional<expr> expand(expr const & m, extension_context & ctx) const {
check_macro(m);
environment const & env = ctx.env();
auto info = get_projection_info(env, m_proj_name);
if (!info)
throw_kernel_exception(env, sstream() << "invalid projection application '" << m_proj_name
<< "', constant is not a projection function", m);
expr const & s = macro_arg(m, 0);
if (optional<expr> mk = process_proj_arg(env, info->m_constructor, s)) {
// efficient version
buffer<expr> mk_args;
get_app_args(*mk, mk_args);
unsigned i = info->m_nparams + info->m_i;
lean_assert(i < mk_args.size());
return some_expr(mk_args[i]);
} else {
// use definition
constraint_seq cs;
expr s_t = ctx.whnf(ctx.infer_type(s, cs), cs);
if (cs)
return none_expr();
buffer<expr> I_args;
expr const & I = get_app_args(s_t, I_args);
if (!is_constant(I))
return none_expr();
return some_expr(mk_app(mk_app(mk_constant(m_proj_name, const_levels(I)), I_args), s));
}
}
virtual void write(serializer & s) const {
s.write_string(*g_projection_opcode);
s << m_proj_name;
}
};
/** \brief Return true iff the type named \c S can be viewed as
a structure in the given environment.
@ -183,11 +82,6 @@ bool is_structure_like(environment const & env, name const & S) {
return length(inductive::inductive_decl_intros(decl)) == 1 && *inductive::get_num_indices(env, S) == 0;
}
expr mk_projection_macro(name const & proj_name, expr const & e) {
macro_definition def(new projection_macro_definition_cell(proj_name));
return mk_macro(def, 1, &e);
}
projection_info const * projection_converter::is_projection(expr const & e) const {
expr const & f = get_app_fn(e);
if (is_constant(f))
@ -320,22 +214,10 @@ void initialize_projection() {
g_ext = new projection_ext_reg();
g_proj_key = new std::string("proj");
register_module_object_reader(*g_proj_key, projection_info_reader);
g_projection_macro_name = new name("projection");
g_projection_opcode = new std::string("Proj");
register_macro_deserializer(*g_projection_opcode,
[](deserializer & d, unsigned num, expr const * args) {
if (num != 1)
throw corrupted_stream_exception();
name proj_name;
d >> proj_name;
return mk_projection_macro(proj_name, args[0]);
});
}
void finalize_projection() {
delete g_proj_key;
delete g_ext;
delete g_projection_macro_name;
delete g_projection_opcode;
}
}

View file

@ -48,14 +48,6 @@ inline bool is_projection(environment const & env, name const & n) {
return get_projection_info(env, n) != nullptr;
}
/** \brief Create a projection macro term that can peform the following reduction efficiently
pr_i A (mk A f_1 ... f_n) ==> f_i
\remark proj_name is the name of the definition that implements the actual projection.
*/
expr mk_projection_macro(name const & proj_name, expr const & e);
/** \brief Return true iff the type named \c S can be viewed as
a structure in the given environment.