feat(library/data/finset/partition.lean): add theory of partitions into finsets by Haitao Zhang
This commit is contained in:
parent
c76d92284f
commit
c2aa8c6720
3 changed files with 79 additions and 1 deletions
|
@ -5,4 +5,4 @@ Author: Leonardo de Moura
|
|||
|
||||
Finite sets.
|
||||
-/
|
||||
import .basic .comb .to_set .card .bigops
|
||||
import .basic .comb .to_set .card .bigops .partition
|
||||
|
|
|
@ -8,3 +8,4 @@ Finite sets. By default, `import list` imports everything here.
|
|||
[to_set](to_set.lean) : interactions with sets
|
||||
[card](card.lean) : cardinality
|
||||
[bigops](bigops.lean) : finite unions and intersections
|
||||
[partition](partition.lean) : partitions of a type into finsets
|
||||
|
|
77
library/data/finset/partition.lean
Normal file
77
library/data/finset/partition.lean
Normal file
|
@ -0,0 +1,77 @@
|
|||
/-
|
||||
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Author: Haitao Zhang
|
||||
|
||||
Partitions of a type A into finite subsets of A. Such a partition is represented by
|
||||
a function f : A → finset A which maps every element a : A to its equivalence class.
|
||||
-/
|
||||
import .card
|
||||
open function eq.ops
|
||||
|
||||
variable {A : Type}
|
||||
variable [deceqA : decidable_eq A]
|
||||
include deceqA
|
||||
|
||||
namespace finset
|
||||
|
||||
definition is_partition (f : A → finset A) := ∀ a b, a ∈ f b = (f a = f b)
|
||||
|
||||
structure partition : Type :=
|
||||
(set : finset A) (part : A → finset A) (is_part : is_partition part)
|
||||
(complete : set = Union set part)
|
||||
|
||||
attribute partition.part [coercion]
|
||||
|
||||
namespace partition
|
||||
|
||||
definition equiv_classes (f : partition) : finset (finset A) :=
|
||||
image (partition.part f) (partition.set f)
|
||||
|
||||
lemma equiv_class_disjoint (f : partition) (a1 a2 : finset A) (Pa1 : a1 ∈ equiv_classes f)
|
||||
(Pa2 : a2 ∈ equiv_classes f) :
|
||||
a1 ≠ a2 → a1 ∩ a2 = ∅ :=
|
||||
assume Pne,
|
||||
assert Pe1 : _, from exists_of_mem_image Pa1, obtain g1 Pg1, from Pe1,
|
||||
assert Pe2 : _, from exists_of_mem_image Pa2, obtain g2 Pg2, from Pe2,
|
||||
begin
|
||||
apply inter_eq_empty_of_disjoint,
|
||||
apply disjoint.intro,
|
||||
rewrite [eq.symm (and.right Pg1), eq.symm (and.right Pg2)],
|
||||
intro x,
|
||||
rewrite [*partition.is_part f],
|
||||
intro Pxg1, rewrite [Pxg1, and.right Pg1, and.right Pg2],
|
||||
intro Pe, exact absurd Pe Pne
|
||||
end
|
||||
|
||||
theorem class_equation (f : @partition A _) :
|
||||
card (partition.set f) = nat.Sum (equiv_classes f) card :=
|
||||
let s := (partition.set f), p := (partition.part f), img := image p s in
|
||||
calc
|
||||
card s = card (Union s p) : partition.complete f
|
||||
... = card (Union img id) : image_eq_Union_index_image s p
|
||||
... = card (Union (equiv_classes f) id) : rfl
|
||||
... = nat.Sum (equiv_classes f) card : card_Union_of_disjoint _ id (equiv_class_disjoint f)
|
||||
|
||||
lemma equiv_class_refl {f : A → finset A} (Pequiv : is_partition f) : ∀ a, a ∈ f a :=
|
||||
take a, by rewrite [Pequiv a a]
|
||||
|
||||
-- make it a little easier to prove union from restriction
|
||||
lemma restriction_imp_union {s : finset A} (f : A → finset A) (Pequiv : is_partition f)
|
||||
(Psub : ∀{a}, a ∈ s → f a ⊆ s) :
|
||||
s = Union s f :=
|
||||
ext (take a, iff.intro
|
||||
(assume Pains,
|
||||
begin
|
||||
rewrite [(Union_insert_of_mem f Pains)⁻¹, Union_insert],
|
||||
apply mem_union_l, exact equiv_class_refl Pequiv a
|
||||
end)
|
||||
(assume Painu,
|
||||
have Pclass : ∃ x, x ∈ s ∧ a ∈ f x,
|
||||
from iff.elim_left (mem_Union_iff s f _) Painu,
|
||||
obtain x Px, from Pclass,
|
||||
have Pfx : f x ⊆ s, from Psub (and.left Px),
|
||||
mem_of_subset_of_mem Pfx (and.right Px)))
|
||||
|
||||
end partition
|
||||
end finset
|
Loading…
Reference in a new issue