Add expressions (dependent type theory)

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2013-07-22 04:03:46 -07:00
parent a2e72dbd92
commit c32dfe22b6
8 changed files with 654 additions and 1 deletions

3
.gitignore vendored
View file

@ -5,4 +5,5 @@ build
GPATH
GRTAGS
GSYMS
GTAGS
GTAGS
Makefile

View file

@ -45,6 +45,7 @@ include_directories(${LEAN_SOURCE_DIR}/util)
include_directories(${LEAN_SOURCE_DIR}/numerics)
include_directories(${LEAN_SOURCE_DIR}/interval)
include_directories(${LEAN_SOURCE_DIR}/sexpr)
include_directories(${LEAN_SOURCE_DIR}/kernel)
add_subdirectory(util)
set(EXTRA_LIBS ${EXTRA_LIBS} util)
@ -54,9 +55,12 @@ add_subdirectory(sexpr)
set(EXTRA_LIBS ${EXTRA_LIBS} sexpr)
add_subdirectory(interval)
set(EXTRA_LIBS ${EXTRA_LIBS} interval)
add_subdirectory(kernel)
set(EXTRA_LIBS ${EXTRA_LIBS} kernel)
set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -pthread")
add_subdirectory(shell)
add_subdirectory(tests/util)
add_subdirectory(tests/numerics)
add_subdirectory(tests/interval)
add_subdirectory(tests/sexpr)
add_subdirectory(tests/kernel)

View file

@ -0,0 +1,2 @@
add_library(kernel expr.cpp)
target_link_libraries(kernel ${EXTRA_LIBS})

236
src/kernel/expr.cpp Normal file
View file

@ -0,0 +1,236 @@
/*
Copyright (c) 2013 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#include <vector>
#include "expr.h"
#include "expr_set.h"
#include "hash.h"
namespace lean {
unsigned hash_args(unsigned size, expr const * args) {
return hash(size, [&args](unsigned i){ return args[i].hash(); });
}
unsigned hash_vars(unsigned size, uvar const * vars) {
return hash(size, [&vars](unsigned i){ return vars[i].second.hash(); });
}
expr_cell::expr_cell(expr_kind k, unsigned h):
m_kind(k),
m_hash(h),
m_rc(1) {}
expr_var::expr_var(unsigned idx):
expr_cell(expr_kind::Var, idx),
m_vidx(idx) {}
expr_const::expr_const(name const & n, unsigned pos):
expr_cell(expr_kind::Constant, m_name.hash()),
m_name(n),
m_pos(pos) {}
expr_app::expr_app(unsigned num_args):
expr_cell(expr_kind::App, 0),
m_num_args(num_args) {
}
expr_app::~expr_app() {
for (unsigned i = 0; i < m_num_args; i++)
(m_args+i)->~expr();
}
expr app(unsigned num_args, expr const * args) {
lean_assert(num_args > 1);
unsigned _num_args;
unsigned _num_args0;
expr const & arg0 = args[0];
// Remark: we represet ((app a b) c) as (app a b c)
if (is_app(arg0)) {
_num_args0 = get_num_args(arg0);
_num_args = num_args + _num_args0 - 1;
}
else {
_num_args = num_args;
}
char * mem = new char[sizeof(expr_app) + _num_args*sizeof(expr)];
expr r(new (mem) expr_app(_num_args));
expr * m_args = to_app(r)->m_args;
unsigned i = 0;
unsigned j = 0;
if (_num_args != num_args) {
for (; i < _num_args0; i++)
new (m_args+i) expr(get_arg(arg0, i));
j++;
}
for (; i < _num_args; ++i, ++j) {
lean_assert(j < num_args);
new (m_args+i) expr(args[j]);
}
to_app(r)->m_hash = hash_args(_num_args, m_args);
return r;
}
expr_abstraction::expr_abstraction(expr_kind k, name const & n, expr const & t, expr const & e):
expr_cell(k, ::lean::hash(t.hash(), e.hash())),
m_name(n),
m_type(t),
m_expr(e) {
}
expr_lambda::expr_lambda(name const & n, expr const & t, expr const & e):
expr_abstraction(expr_kind::Lambda, n, t, e) {}
expr_pi::expr_pi(name const & n, expr const & t, expr const & e):
expr_abstraction(expr_kind::Pi, n, t, e) {}
expr_type::expr_type(unsigned size, uvar const * vars):
expr_cell(expr_kind::Type, hash_vars(size, vars)),
m_size(size) {
for (unsigned i = 0; i < m_size; i++)
new (m_vars + i) uvar(vars[i]);
}
expr_type::~expr_type() {
for (unsigned i = 0; i < m_size; i++)
(m_vars+i)->~uvar();
}
expr type(unsigned size, uvar const * vars) {
char * mem = new char[sizeof(expr_type) + size*sizeof(uvar)];
return expr(new (mem) expr_type(size, vars));
}
expr_numeral::expr_numeral(mpz const & n):
expr_cell(expr_kind::Numeral, n.hash()),
m_numeral(n) {}
void expr_cell::dealloc() {
switch (m_kind) {
case expr_kind::Var: delete static_cast<expr_var*>(this); break;
case expr_kind::Constant: delete static_cast<expr_const*>(this); break;
case expr_kind::App: static_cast<expr_app*>(this)->~expr_app(); delete[] reinterpret_cast<char*>(this); break;
case expr_kind::Lambda: delete static_cast<expr_lambda*>(this); break;
case expr_kind::Pi: delete static_cast<expr_pi*>(this); break;
case expr_kind::Prop: delete static_cast<expr_prop*>(this); break;
case expr_kind::Type: static_cast<expr_type*>(this)->~expr_type(); delete[] reinterpret_cast<char*>(this); break;
case expr_kind::Numeral: delete static_cast<expr_numeral*>(this); break;
}
}
bool operator==(expr const & a, expr const & b) {
if (eqp(a, b))
return true;
if (a.hash() != b.hash() || a.kind() != b.kind())
return false;
static thread_local std::vector<expr_cell_pair> todo;
static thread_local expr_cell_pair_set visited;
auto visit = [&](expr_cell * a, expr_cell * b) -> bool {
if (a == b)
return true;
if (a->hash() != b->hash())
return false;
if (a->kind() != b->kind())
return false;
if (a->kind() == expr_kind::Prop)
return true;
if (a->kind() == expr_kind::Var)
return get_var_idx(a) == get_var_idx(b);
expr_cell_pair p(a, b);
if (visited.find(p) != visited.end())
return true;
todo.push_back(p);
visited.insert(p);
return true;
};
todo.clear();
visited.clear();
visit(a.raw(), b.raw());
while (!todo.empty()) {
auto p = todo.back();
expr_cell * a = p.first;
expr_cell * b = p.second;
todo.pop_back();
lean_assert(a != b);
lean_assert(a->hash() == b->hash());
lean_assert(a->kind() == b->kind());
switch (a->kind()) {
case expr_kind::Var:
lean_unreachable();
break;
case expr_kind::Constant:
if (get_const_name(a) != get_const_name(b))
return false;
break;
case expr_kind::App:
if (get_num_args(a) != get_num_args(b))
return false;
for (unsigned i = 0; i < get_num_args(a); i++) {
if (!visit(get_arg(a, i).raw(), get_arg(b, i).raw()))
return false;
}
break;
case expr_kind::Lambda:
case expr_kind::Pi:
// Lambda and Pi
// Remark: we ignore get_abs_name because we want alpha-equivalence
if (!visit(get_abs_type(a).raw(), get_abs_type(b).raw()) ||
!visit(get_abs_expr(a).raw(), get_abs_expr(b).raw()))
return false;
break;
case expr_kind::Prop:
lean_unreachable();
break;
case expr_kind::Type:
if (get_ty_num_vars(a) != get_ty_num_vars(b))
return false;
for (unsigned i = 0; i < get_ty_num_vars(a); i++) {
uvar v1 = get_ty_var(a, i);
uvar v2 = get_ty_var(b, i);
if (v1.first != v2.first || v1.second != v2.second)
return false;
}
break;
case expr_kind::Numeral:
if (get_numeral(a) != get_numeral(b))
return false;
break;
}
}
return true;
}
// Low-level pretty printer
std::ostream & operator<<(std::ostream & out, expr const & a) {
switch (a.kind()) {
case expr_kind::Var:
out << "#" << get_var_idx(a);
break;
case expr_kind::Constant:
out << get_const_name(a);
break;
case expr_kind::App:
out << "(";
for (unsigned i = 0; i < get_num_args(a); i++) {
if (i > 0) out << " ";
out << get_arg(a, i);
}
out << ")";
break;
case expr_kind::Lambda:
out << "(fun (" << get_abs_name(a) << " : " << get_abs_type(a) << ") " << get_abs_expr(a) << ")";
break;
case expr_kind::Pi:
out << "(forall (" << get_abs_name(a) << " : " << get_abs_type(a) << ") " << get_abs_expr(a) << ")";
break;
case expr_kind::Prop:
out << "Prop";
break;
case expr_kind::Type:
out << "Type";
break;
case expr_kind::Numeral:
out << get_numeral(a);
break;
}
return out;
}
}

293
src/kernel/expr.h Normal file
View file

@ -0,0 +1,293 @@
/*
Copyright (c) 2013 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#pragma once
#include <iostream>
#include <limits>
#include "name.h"
#include "rc.h"
#include "mpz.h"
namespace lean {
/* =======================================
Expressions
expr ::= Var idx
| Constant name
| App [expr]
| Lambda name expr expr
| Pi name expr expr
| Prop
| Type universe
| Numeral value
TODO: add meta-variables, let, constructor references and match.
The main API is divided in the following sections
- Testers
- Constructors
- Accessors
- Miscellaneous
======================================= */
enum class expr_kind { Var, Constant, App, Lambda, Pi, Prop, Type, Numeral };
/**
\brief Base class used to represent expressions.
In principle, the expr_cell class and subclasses should be located in the .cpp file.
However, this is performance critical code, and we want to be able to have
inline definitions.
*/
class expr_cell {
protected:
expr_kind m_kind;
unsigned m_hash;
MK_LEAN_RC(); // Declare m_rc counter
void dealloc();
public:
expr_cell(expr_kind k, unsigned h);
expr_kind kind() const { return m_kind; }
unsigned hash() const { return m_hash; }
};
/**
\brief Instead of fixed universes, we use universe variables with
explicit user-declared constraints between universe variables.
Each universe variable is associated with a name.
If the Boolean in the following pair is true, then we are taking
the successor of the universe variable.
For additional information, see:
Explicit universes for the calculus of constructions, Courant J (2002).
*/
typedef std::pair<bool, name> universe_variable;
typedef universe_variable uvar;
/**
\brief Exprs for encoding formulas/expressions, types and proofs.
*/
class expr {
private:
expr_cell * m_ptr;
explicit expr(expr_cell * ptr):m_ptr(ptr) {}
public:
expr():m_ptr(0) {}
expr(expr const & s):m_ptr(s.m_ptr) { if (m_ptr) m_ptr->inc_ref(); }
expr(expr && s):m_ptr(s.m_ptr) { s.m_ptr = 0; }
~expr() { if (m_ptr) m_ptr->dec_ref(); }
friend void swap(expr & a, expr & b) { std::swap(a.m_ptr, b.m_ptr); }
expr & operator=(expr const & s) {
if (s.m_ptr)
s.m_ptr->inc_ref();
if (m_ptr)
m_ptr->dec_ref();
m_ptr = s.m_ptr;
return *this;
}
expr & operator=(expr && s) {
if (m_ptr)
m_ptr->dec_ref();
m_ptr = s.m_ptr;
s.m_ptr = 0;
return *this;
}
expr_kind kind() const { return m_ptr->kind(); }
unsigned hash() const { return m_ptr->hash(); }
expr_cell * raw() const { return m_ptr; }
friend expr var(unsigned idx);
friend expr constant(name const & n);
friend expr constant(name const & n, unsigned pos);
friend expr app(unsigned num_args, expr const * args);
friend expr app(std::initializer_list<expr> const & l);
friend expr lambda(name const & n, expr const & t, expr const & e);
friend expr pi(name const & n, expr const & t, expr const & e);
friend expr prop();
friend expr type(unsigned size, uvar const * vars);
friend expr type(std::initializer_list<uvar> const & l);
friend expr numeral(mpz const & n);
friend bool eqp(expr const & a, expr const & b) { return a.m_ptr == b.m_ptr; }
};
// =======================================
// Expr Representation
// 1. Free variables
class expr_var : public expr_cell {
unsigned m_vidx; // de Bruijn index
public:
expr_var(unsigned idx);
unsigned get_vidx() const { return m_vidx; }
};
// 2. Constants
class expr_const : public expr_cell {
name m_name;
unsigned m_pos; // position in the environment.
public:
expr_const(name const & n, unsigned pos = std::numeric_limits<unsigned>::max());
name const & get_name() const { return m_name; }
unsigned get_pos() const { return m_pos; }
};
// 3. Applications
class expr_app : public expr_cell {
unsigned m_num_args;
expr m_args[0];
friend expr app(unsigned num_args, expr const * args);
public:
expr_app(unsigned size);
~expr_app();
unsigned get_num_args() const { return m_num_args; }
expr const & get_arg(unsigned idx) const { lean_assert(idx < m_num_args); return m_args[idx]; }
};
// 4. Abstraction
class expr_abstraction : public expr_cell {
name m_name;
expr m_type;
expr m_expr;
public:
expr_abstraction(expr_kind k, name const & n, expr const & t, expr const & e);
name const & get_name() const { return m_name; }
expr const & get_type() const { return m_type; }
expr const & get_expr() const { return m_expr; }
};
// 5. Lambda
class expr_lambda : public expr_abstraction {
public:
expr_lambda(name const & n, expr const & t, expr const & e);
};
// 6. Pi
class expr_pi : public expr_abstraction {
public:
expr_pi(name const & n, expr const & t, expr const & e);
};
// 7. Prop
class expr_prop : public expr_cell {
public:
expr_prop():expr_cell(expr_kind::Prop, 17) {}
};
// 8. Type lvl
class expr_type : public expr_cell {
unsigned m_size;
uvar m_vars[0];
public:
expr_type(unsigned size, uvar const * vars);
~expr_type();
unsigned size() const { return m_size; }
uvar const & get_var(unsigned idx) const { lean_assert(idx < m_size); return m_vars[idx]; }
};
// 9. Numerals
class expr_numeral : public expr_cell {
mpz m_numeral;
public:
expr_numeral(mpz const & n);
mpz const & get_num() const { return m_numeral; }
};
// =======================================
// =======================================
// Testers
inline bool is_var(expr_cell * e) { return e->kind() == expr_kind::Var; }
inline bool is_constant(expr_cell * e) { return e->kind() == expr_kind::Constant; }
inline bool is_app(expr_cell * e) { return e->kind() == expr_kind::App; }
inline bool is_lambda(expr_cell * e) { return e->kind() == expr_kind::Lambda; }
inline bool is_pi(expr_cell * e) { return e->kind() == expr_kind::Pi; }
inline bool is_prop(expr_cell * e) { return e->kind() == expr_kind::Prop; }
inline bool is_type(expr_cell * e) { return e->kind() == expr_kind::Type; }
inline bool is_numeral(expr_cell * e) { return e->kind() == expr_kind::Numeral; }
inline bool is_abstraction(expr_cell * e) { return is_lambda(e) || is_pi(e); }
inline bool is_sort(expr_cell * e) { return is_prop(e) || is_type(e); }
inline bool is_var(expr const & e) { return e.kind() == expr_kind::Var; }
inline bool is_constant(expr const & e) { return e.kind() == expr_kind::Constant; }
inline bool is_app(expr const & e) { return e.kind() == expr_kind::App; }
inline bool is_lambda(expr const & e) { return e.kind() == expr_kind::Lambda; }
inline bool is_pi(expr const & e) { return e.kind() == expr_kind::Pi; }
inline bool is_prop(expr const & e) { return e.kind() == expr_kind::Prop; }
inline bool is_type(expr const & e) { return e.kind() == expr_kind::Type; }
inline bool is_numeral(expr const & e) { return e.kind() == expr_kind::Numeral; }
inline bool is_abstraction(expr const & e) { return is_lambda(e) || is_pi(e); }
inline bool is_sort(expr const & e) { return is_prop(e) || is_type(e); }
// =======================================
// =======================================
// Constructors
inline expr var(unsigned idx) { return expr(new expr_var(idx)); }
inline expr constant(name const & n) { return expr(new expr_const(n)); }
inline expr constant(name const & n, unsigned pos) { return expr(new expr_const(n, pos)); }
expr app(unsigned num_args, expr const * args);
inline expr app(std::initializer_list<expr> const & l) { return app(l.size(), l.begin()); }
inline expr lambda(name const & n, expr const & t, expr const & e) { return expr(new expr_lambda(n, t, e)); }
inline expr pi(name const & n, expr const & t, expr const & e) { return expr(new expr_pi(n, t, e)); }
inline expr prop() { return expr(new expr_prop()); }
expr type(unsigned size, uvar const * vars);
inline expr type(std::initializer_list<uvar> const & l) { return type(l.size(), l.begin()); }
inline expr numeral(mpz const & n) { return expr(new expr_numeral(n)); }
// =======================================
// =======================================
// Casting
inline expr_var * to_var(expr_cell * e) { lean_assert(is_var(e)); return static_cast<expr_var*>(e); }
inline expr_const * to_constant(expr_cell * e) { lean_assert(is_constant(e)); return static_cast<expr_const*>(e); }
inline expr_app * to_app(expr_cell * e) { lean_assert(is_app(e)); return static_cast<expr_app*>(e); }
inline expr_abstraction * to_abstraction(expr_cell * e) { lean_assert(is_abstraction(e)); return static_cast<expr_abstraction*>(e); }
inline expr_lambda * to_lambda(expr_cell * e) { lean_assert(is_lambda(e)); return static_cast<expr_lambda*>(e); }
inline expr_pi * to_pi(expr_cell * e) { lean_assert(is_pi(e)); return static_cast<expr_pi*>(e); }
inline expr_prop * to_prop(expr_cell * e) { lean_assert(is_prop(e)); return static_cast<expr_prop*>(e); }
inline expr_type * to_type(expr_cell * e) { lean_assert(is_type(e)); return static_cast<expr_type*>(e); }
inline expr_numeral * to_numeral(expr_cell * e) { lean_assert(is_numeral(e)); return static_cast<expr_numeral*>(e); }
inline expr_var * to_var(expr const & e) { return to_var(e.raw()); }
inline expr_const * to_constant(expr const & e) { return to_constant(e.raw()); }
inline expr_app * to_app(expr const & e) { return to_app(e.raw()); }
inline expr_abstraction * to_abstraction(expr const & e) { return to_abstraction(e.raw()); }
inline expr_lambda * to_lambda(expr const & e) { return to_lambda(e.raw()); }
inline expr_pi * to_pi(expr const & e) { return to_pi(e.raw()); }
inline expr_prop * to_prop(expr const & e) { return to_prop(e.raw()); }
inline expr_type * to_type(expr const & e) { return to_type(e.raw()); }
inline expr_numeral * to_numeral(expr const & e) { return to_numeral(e.raw()); }
// =======================================
// =======================================
// Accessors
inline unsigned get_var_idx(expr_cell * e) { return to_var(e)->get_vidx(); }
inline name const & get_const_name(expr_cell * e) { return to_constant(e)->get_name(); }
inline unsigned get_const_pos(expr_cell * e) { return to_constant(e)->get_pos(); }
inline unsigned get_num_args(expr_cell * e) { return to_app(e)->get_num_args(); }
inline expr const & get_arg(expr_cell * e, unsigned idx) { return to_app(e)->get_arg(idx); }
inline name const & get_abs_name(expr_cell * e) { return to_abstraction(e)->get_name(); }
inline expr const & get_abs_type(expr_cell * e) { return to_abstraction(e)->get_type(); }
inline expr const & get_abs_expr(expr_cell * e) { return to_abstraction(e)->get_expr(); }
inline unsigned get_ty_num_vars(expr_cell * e) { return to_type(e)->size(); }
inline uvar const & get_ty_var(expr_cell * e, unsigned idx) { return to_type(e)->get_var(idx); }
inline mpz const & get_numeral(expr_cell * e) { return to_numeral(e)->get_num(); }
inline unsigned get_var_idx(expr const & e) { return to_var(e)->get_vidx(); }
inline name const & get_const_name(expr const & e) { return to_constant(e)->get_name(); }
inline unsigned get_const_pos(expr const & e) { return to_constant(e)->get_pos(); }
inline unsigned get_num_args(expr const & e) { return to_app(e)->get_num_args(); }
inline expr const & get_arg(expr const & e, unsigned idx) { return to_app(e)->get_arg(idx); }
inline name const & get_abs_name(expr const & e) { return to_abstraction(e)->get_name(); }
inline expr const & get_abs_type(expr const & e) { return to_abstraction(e)->get_type(); }
inline expr const & get_abs_expr(expr const & e) { return to_abstraction(e)->get_expr(); }
inline unsigned get_ty_num_vars(expr const & e) { return to_type(e)->size(); }
inline uvar const & get_ty_var(expr const & e, unsigned idx) { return to_type(e)->get_var(idx); }
inline mpz const & get_numeral(expr const & e) { return to_numeral(e)->get_num(); }
// =======================================
// =======================================
// Structural equality
bool operator==(expr const & a, expr const & b);
inline bool operator!=(expr const & a, expr const & b) { return !operator==(a, b); }
// =======================================
std::ostream & operator<<(std::ostream & out, expr const & a);
}

60
src/kernel/expr_set.h Normal file
View file

@ -0,0 +1,60 @@
/*
Copyright (c) 2013 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#pragma once
#include <unordered_set>
#include "expr.h"
#include "hash.h"
namespace lean {
// =======================================
// Expression Set
// Remark: to expressions are assumed to be equal if they are "pointer-equal"
struct expr_hash {
unsigned operator()(expr const & e) const { return e.hash(); }
};
struct expr_eqp {
bool operator()(expr const & e1, expr const & e2) const { return eqp(e1, e2); }
};
typedef std::unordered_set<expr, expr_hash, expr_eqp> expr_set;
// =======================================
// =======================================
// (low level) Expression Cell Set
// Remark: to expressions are assumed to be equal if they are "pointer-equal"
//
// WARNING: use with care, this kind of set
// does not prevent an expression from being
// garbage collected.
struct expr_cell_hash {
unsigned operator()(expr_cell * e) const { return e->hash(); }
};
struct expr_cell_eqp {
bool operator()(expr_cell * e1, expr_cell * e2) const { return e1 == e2; }
};
typedef std::unordered_set<expr_cell*, expr_cell_hash, expr_cell_eqp> expr_cell_set;
// =======================================
// =======================================
// (low level) Expression Cell pair Set
// Remark: to expressions are assumed to be equal if they are "pointer-equal"
//
// WARNING: use with care, this kind of set
// does not prevent an expression from being
// garbage collected.
typedef std::pair<expr_cell *, expr_cell *> expr_cell_pair;
struct expr_cell_pair_hash {
unsigned operator()(expr_cell_pair const & p) const { return hash(p.first->hash(), p.second->hash()); }
};
struct expr_cell_pair_eqp {
bool operator()(expr_cell_pair const & p1, expr_cell_pair const & p2) const {
return p1.first == p2.first && p1.second == p2.second;
}
};
typedef std::unordered_set<expr_cell_pair, expr_cell_pair_hash, expr_cell_pair_eqp> expr_cell_pair_set;
// =======================================
}

View file

@ -5,9 +5,12 @@ Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#pragma once
#include "debug.h"
namespace lean {
void mix(unsigned & a, unsigned & b, unsigned & c);
unsigned hash(char const * str, unsigned length, unsigned init_value);
inline unsigned hash(unsigned h1, unsigned h2) {
@ -17,4 +20,54 @@ inline unsigned hash(unsigned h1, unsigned h2) {
return h2;
}
template<typename H>
unsigned hash(unsigned n, H h, unsigned init_value = 31) {
unsigned a, b, c;
lean_assert(n > 0);
a = b = 0x9e3779b9;
c = 11;
switch (n) {
case 1:
a += init_value;
b = h(0);
mix(a, b, c);
return c;
case 2:
a += init_value;
b += h(0);
c += h(1);
mix(a, b, c);
return c;
case 3:
a += h(0);
b += h(1);
c += h(2);
mix(a, b, c);
a += init_value;
mix(a, b, c);
return c;
default:
while (n >= 3) {
n--;
a += h(n);
n--;
b += h(n);
n--;
c += h(n);
mix(a, b, c);
}
a += init_value;
switch (n) {
case 2: b += h(1);
case 1: c += h(0);
}
mix(a, b, c);
return c;
}
}
}

View file

@ -12,7 +12,9 @@ Author: Leonardo de Moura
#ifdef LEAN_THREAD_UNSAFE_REF_COUNT
#define MK_LEAN_RC() \
private: \
unsigned m_rc; \
public: \
unsigned get_rc() const { return m_rc; } \
void inc_ref() { m_rc++; } \
bool dec_ref_core() { lean_assert(get_rc() > 0); m_rc--; return m_rc == 0; } \
@ -20,7 +22,9 @@ void dec_ref() { if (dec_ref_core()) dealloc(); }
#else
#include <atomic>
#define MK_LEAN_RC() \
private: \
std::atomic<unsigned> m_rc; \
public: \
unsigned get_rc() const { return std::atomic_load(&m_rc); } \
void inc_ref() { std::atomic_fetch_add_explicit(&m_rc, 1u, std::memory_order_relaxed); } \
bool dec_ref_core() { lean_assert(get_rc() > 0); return std::atomic_fetch_sub_explicit(&m_rc, 1u, std::memory_order_relaxed) == 1u; } \