feat(library/standard/logic/classes): add 'by_contradiction' theorem for decidable propositions
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
ae2e0fd3dc
commit
c3f57cdb1c
5 changed files with 44 additions and 14 deletions
|
@ -47,7 +47,7 @@ assume Hp : p,
|
|||
Hpred ▸ (refl (epsilon (λ x, x = true ∨ p)))
|
||||
|
||||
theorem em : p ∨ ¬p :=
|
||||
have H : ¬(u = v) → ¬p, from contrapos p_implies_uv,
|
||||
have H : ¬(u = v) → ¬p, from mt p_implies_uv,
|
||||
or_elim uv_implies_p
|
||||
(assume Hne : ¬(u = v), or_inr (H Hne))
|
||||
(assume Hp : p, or_inl Hp)
|
||||
|
|
|
@ -12,12 +12,15 @@ inductive decidable (p : Prop) : Type :=
|
|||
| inl : p → decidable p
|
||||
| inr : ¬p → decidable p
|
||||
|
||||
theorem decidable_true [instance] : decidable true :=
|
||||
inl trivial
|
||||
|
||||
theorem decidable_false [instance] : decidable false :=
|
||||
inr not_false_trivial
|
||||
|
||||
theorem induction_on {p : Prop} {C : Prop} (H : decidable p) (H1 : p → C) (H2 : ¬p → C) : C :=
|
||||
decidable_rec H1 H2 H
|
||||
|
||||
theorem em {p : Prop} (H : decidable p) : p ∨ ¬p :=
|
||||
induction_on H (λ Hp, or_inl Hp) (λ Hnp, or_inr Hnp)
|
||||
|
||||
definition rec_on [inline] {p : Prop} {C : Type} (H : decidable p) (H1 : p → C) (H2 : ¬p → C) : C :=
|
||||
decidable_rec H1 H2 H
|
||||
|
||||
|
@ -33,11 +36,13 @@ decidable_rec
|
|||
d2)
|
||||
d1
|
||||
|
||||
theorem decidable_true [instance] : decidable true :=
|
||||
inl trivial
|
||||
theorem em (p : Prop) {H : decidable p} : p ∨ ¬p :=
|
||||
induction_on H (λ Hp, or_inl Hp) (λ Hnp, or_inr Hnp)
|
||||
|
||||
theorem decidable_false [instance] : decidable false :=
|
||||
inr not_false_trivial
|
||||
theorem by_contradiction {p : Prop} {Hp : decidable p} (H : ¬p → false) : p :=
|
||||
or_elim (em p)
|
||||
(assume H1 : p, H1)
|
||||
(assume H1 : ¬p, false_elim p (H H1))
|
||||
|
||||
theorem decidable_and [instance] {a b : Prop} (Ha : decidable a) (Hb : decidable b) : decidable (a ∧ b) :=
|
||||
rec_on Ha
|
||||
|
|
|
@ -45,9 +45,6 @@ assume Hna : ¬a, absurd Ha Hna
|
|||
theorem mt {a b : Prop} (H1 : a → b) (H2 : ¬b) : ¬a :=
|
||||
assume Ha : a, absurd (H1 Ha) H2
|
||||
|
||||
theorem contrapos {a b : Prop} (H : a → b) : ¬b → ¬a :=
|
||||
assume Hnb : ¬b, mt H Hnb
|
||||
|
||||
theorem absurd_elim {a : Prop} (b : Prop) (H1 : a) (H2 : ¬a) : b :=
|
||||
false_elim b (absurd H1 H2)
|
||||
|
||||
|
|
|
@ -98,9 +98,17 @@ theorem ne_irrefl {A : Type} {a : A} (H : a ≠ a) : false := H (refl a)
|
|||
theorem ne_symm {A : Type} {a b : A} (H : a ≠ b) : b ≠ a :=
|
||||
assume H1 : b = a, H (H1⁻¹)
|
||||
|
||||
theorem eq_ne_trans {A : Type} {a b c : A} (H1 : a = b) (H2 : b ≠ c) : a ≠ c := H1⁻¹ ▸ H2
|
||||
theorem eq_ne_trans {A : Type} {a b c : A} (H1 : a = b) (H2 : b ≠ c) : a ≠ c :=
|
||||
H1⁻¹ ▸ H2
|
||||
|
||||
theorem ne_eq_trans {A : Type} {a b c : A} (H1 : a ≠ b) (H2 : b = c) : a ≠ c := H2 ▸ H1
|
||||
theorem ne_eq_trans {A : Type} {a b c : A} (H1 : a ≠ b) (H2 : b = c) : a ≠ c :=
|
||||
H2 ▸ H1
|
||||
|
||||
calc_trans eq_ne_trans
|
||||
calc_trans ne_eq_trans
|
||||
calc_trans ne_eq_trans
|
||||
|
||||
theorem p_ne_false {p : Prop} (Hp : p) : p ≠ false :=
|
||||
assume Heq : p = false, Heq ▸ Hp
|
||||
|
||||
theorem p_ne_true {p : Prop} (Hnp : ¬p) : p ≠ true :=
|
||||
assume Heq : p = true, absurd_not_true (Heq ▸ Hnp)
|
||||
|
|
|
@ -51,3 +51,23 @@ theorem if_congr {c₁ c₂ : Prop} {H₁ : decidable c₁} {A : Type} {t₁ t
|
|||
(if c₁ then t₁ else e₁) = (@ite c₂ (decidable_eq_equiv H₁ Hc) A t₂ e₂) :=
|
||||
have H2 [fact] : decidable c₂, from (decidable_eq_equiv H₁ Hc),
|
||||
if_congr_aux Hc Ht He
|
||||
|
||||
exit
|
||||
theorem app_if_distribute {A B : Type} (c : Prop) {H : decidable c} (f : A → B) (a b : A) : f (if c then a else b) = if c then f a else f b :=
|
||||
or_elim (decidable.em H)
|
||||
(assume Hc : c, calc
|
||||
f (if c then a else b) = f (if true then a else b) : { eqt_intro Hc }
|
||||
(assume Hnc : ¬c, sorry)
|
||||
|
||||
exit
|
||||
:= or_elim (em c)
|
||||
(λ Hc : c , calc
|
||||
f (if c then a else b) = f (if true then a else b) : { eqt_intro Hc }
|
||||
... = f a : { if_true a b }
|
||||
... = if true then f a else f b : symm (if_true (f a) (f b))
|
||||
... = if c then f a else f b : { symm (eqt_intro Hc) })
|
||||
(λ Hnc : ¬ c, calc
|
||||
f (if c then a else b) = f (if false then a else b) : { eqf_intro Hnc }
|
||||
... = f b : { if_false a b }
|
||||
... = if false then f a else f b : symm (if_false (f a) (f b))
|
||||
... = if c then f a else f b : { symm (eqf_intro Hnc) })
|
||||
|
|
Loading…
Reference in a new issue