feat(library/data/fintype): prove that A->B has decidable equality when A is a finite type and B has decidable equality

This commit is contained in:
Leonardo de Moura 2015-04-11 16:45:27 -07:00
parent 3df7fe120c
commit c437fbe0bc

View file

@ -7,7 +7,7 @@ Authors: Leonardo de Moura
Finite type (type class)
-/
import data.list data.bool
open list bool unit decidable
open list bool unit decidable option function
structure fintype [class] (A : Type) : Type :=
(elems : list A) (unique : nodup elems) (complete : ∀ a, a ∈ elems)
@ -20,7 +20,7 @@ fintype.mk [ff, tt]
dec_trivial
(λ b, match b with | tt := dec_trivial | ff := dec_trivial end)
definition fintype_product [instance] {A B : Type} : fintype A → fintype B → fintype (A × B)
definition fintype_product [instance] {A B : Type} : Π [h₁ : fintype A] [h₂ : fintype B], fintype (A × B)
| (fintype.mk e₁ u₁ c₁) (fintype.mk e₂ u₂ c₂) :=
fintype.mk
(cross_product e₁ e₂)
@ -29,3 +29,54 @@ definition fintype_product [instance] {A B : Type} : fintype A → fintype B →
match p with
(a, b) := mem_cross_product (c₁ a) (c₂ b)
end)
/- auxiliary function for finding 'a' s.t. f a ≠ g a -/
section find_discr
variables {A B : Type}
variable [h : decidable_eq B]
include h
definition find_discr (f g : A → B) : list A → option A
| [] := none
| (a::l) := if f a = g a then find_discr l else some a
theorem find_discr_nil (f g : A → B) : find_discr f g [] = none :=
rfl
theorem find_discr_cons_of_ne {f g : A → B} {a : A} (l : list A) : f a ≠ g a → find_discr f g (a::l) = some a :=
assume ne, if_neg ne
theorem find_discr_cons_of_eq {f g : A → B} {a : A} (l : list A) : f a = g a → find_discr f g (a::l) = find_discr f g l :=
assume eq, if_pos eq
theorem ne_of_find_discr_eq_some {f g : A → B} {a : A} : ∀ {l}, find_discr f g l = some a → f a ≠ g a
| [] e := option.no_confusion e
| (x::l) e := by_cases
(λ h : f x = g x,
have aux : find_discr f g l = some a, by rewrite [find_discr_cons_of_eq l h at e]; exact e,
ne_of_find_discr_eq_some aux)
(λ h : f x ≠ g x,
have aux : some x = some a, by rewrite [find_discr_cons_of_ne l h at e]; exact e,
option.no_confusion aux (λ xeqa : x = a, eq.rec_on xeqa h))
theorem all_eq_of_find_discr_eq_none {f g : A → B} : ∀ {l}, find_discr f g l = none → ∀ a, a ∈ l → f a = g a
| [] e a i := absurd i !not_mem_nil
| (x::l) e a i := by_cases
(λ fx_eq_gx : f x = g x,
have aux : find_discr f g l = none, by rewrite [find_discr_cons_of_eq l fx_eq_gx at e]; exact e,
or.elim (eq_or_mem_of_mem_cons i)
(λ aeqx : a = x, by rewrite [-aeqx at fx_eq_gx]; exact fx_eq_gx)
(λ ainl : a ∈ l, all_eq_of_find_discr_eq_none aux a ainl))
(λ fx_ne_gx : f x ≠ g x,
have aux : some x = none, by rewrite [find_discr_cons_of_ne l fx_ne_gx at e]; exact e,
option.no_confusion aux)
end find_discr
definition decidable_eq_fun [instance] {A B : Type} [h₁ : fintype A] [h₂ : decidable_eq B] : decidable_eq (A → B) :=
λ f g,
match h₁ with
| fintype.mk e u c :=
match find_discr f g e with
| some a := λ h : find_discr f g e = some a, inr (λ f_eq_g : f = g, absurd (by rewrite f_eq_g) (ne_of_find_discr_eq_some h))
| none := λ h : find_discr f g e = none, inl (show f = g, from funext (λ a : A, all_eq_of_find_discr_eq_none h a (c a)))
end rfl
end