feat(library/tactic): change apply tactic semantics: goals are not reversed; and dependent arguments are not included

This commit also adds the tactic rapply that corresponds to the previous
semantics we have been using.
This commit is contained in:
Leonardo de Moura 2014-10-22 18:11:09 -07:00
parent 60132912a4
commit c50227ea6e
15 changed files with 78 additions and 31 deletions

View file

@ -44,6 +44,7 @@ inductive expr : Type :=
builtin : expr builtin : expr
opaque definition apply (e : expr) : tactic := builtin opaque definition apply (e : expr) : tactic := builtin
opaque definition rapply (e : expr) : tactic := builtin
opaque definition rename (a b : expr) : tactic := builtin opaque definition rename (a b : expr) : tactic := builtin
opaque definition intro (e : expr) : tactic := builtin opaque definition intro (e : expr) : tactic := builtin

View file

@ -118,7 +118,7 @@
(,(rx "\[priority" (zero-or-more (not (any "\]"))) "\]") . font-lock-doc-face) (,(rx "\[priority" (zero-or-more (not (any "\]"))) "\]") . font-lock-doc-face)
;; tactics ;; tactics
(,(rx (not (any "\.")) word-start (,(rx (not (any "\.")) word-start
(or "\\b.*_tac" "Cond" "or_else" "then" "try" "when" "assumption" "apply" "rename" "intro" "intros" (or "\\b.*_tac" "Cond" "or_else" "then" "try" "when" "assumption" "rapply" "apply" "rename" "intro" "intros"
"back" "beta" "done" "exact" "repeat") "back" "beta" "done" "exact" "repeat")
word-end) word-end)
. 'font-lock-constant-face) . 'font-lock-constant-face)

View file

@ -23,9 +23,39 @@ Author: Leonardo de Moura
#include "library/tactic/expr_to_tactic.h" #include "library/tactic/expr_to_tactic.h"
namespace lean { namespace lean {
/**
\brief Given a sequence metas: <tt>(?m_1 ...) (?m_2 ... ) ... (?m_k ...)</tt>,
we say ?m_i is "redundant" if it occurs in the type of some ?m_j.
This procedure removes from metas any redundant element.
*/
static void remove_redundant_metas(buffer<expr> & metas) {
buffer<expr> mvars;
for (expr const & m : metas)
mvars.push_back(get_app_fn(m));
unsigned k = 0;
for (unsigned i = 0; i < metas.size(); i++) {
bool found = false;
for (unsigned j = 0; j < metas.size(); j++) {
if (j != i) {
if (occurs(mvars[i], mlocal_type(mvars[j]))) {
found = true;
break;
}
}
}
if (!found) {
metas[k] = metas[i];
k++;
}
}
metas.shrink(k);
}
enum subgoals_action_kind { IgnoreSubgoals, AddRevSubgoals, AddSubgoals };
static proof_state_seq apply_tactic_core(environment const & env, io_state const & ios, proof_state const & s, static proof_state_seq apply_tactic_core(environment const & env, io_state const & ios, proof_state const & s,
expr const & _e, buffer<constraint> & cs, expr const & _e, buffer<constraint> & cs,
bool add_meta, bool add_subgoals, bool relax_main_opaque) { bool add_meta, subgoals_action_kind subgoals_action, bool relax_main_opaque) {
goals const & gs = s.get_goals(); goals const & gs = s.get_goals();
if (empty(gs)) if (empty(gs))
return proof_state_seq(); return proof_state_seq();
@ -73,23 +103,33 @@ static proof_state_seq apply_tactic_core(environment const & env, io_state const
check_has_no_local(new_p, _e, "apply"); check_has_no_local(new_p, _e, "apply");
new_subst.assign(g.get_name(), new_p); new_subst.assign(g.get_name(), new_p);
goals new_gs = tail_gs; goals new_gs = tail_gs;
if (add_subgoals) { if (subgoals_action != IgnoreSubgoals) {
buffer<expr> metas; buffer<expr> metas;
for (auto m : meta_lst) { for (auto m : meta_lst) {
if (!new_subst.is_assigned(get_app_fn(m))) if (!new_subst.is_assigned(get_app_fn(m)))
metas.push_back(m); metas.push_back(m);
} }
if (subgoals_action == AddRevSubgoals) {
for (unsigned i = 0; i < metas.size(); i++) for (unsigned i = 0; i < metas.size(); i++)
new_gs = cons(goal(metas[i], new_subst.instantiate_all(tc->infer(metas[i]).first)), new_gs); new_gs = cons(goal(metas[i], new_subst.instantiate_all(tc->infer(metas[i]).first)), new_gs);
} else {
lean_assert(subgoals_action == AddSubgoals);
remove_redundant_metas(metas);
unsigned i = metas.size();
while (i > 0) {
--i;
new_gs = cons(goal(metas[i], new_subst.instantiate_all(tc->infer(metas[i]).first)), new_gs);
}
}
} }
return proof_state(new_gs, new_subst, new_ngen, postponed); return proof_state(new_gs, new_subst, new_ngen, postponed);
}); });
} }
static proof_state_seq apply_tactic_core(environment const & env, io_state const & ios, proof_state const & s, expr const & e, static proof_state_seq apply_tactic_core(environment const & env, io_state const & ios, proof_state const & s, expr const & e,
bool add_meta, bool add_subgoals, bool relax_main_opaque) { bool add_meta, subgoals_action_kind subgoals_action, bool relax_main_opaque) {
buffer<constraint> cs; buffer<constraint> cs;
return apply_tactic_core(env, ios, s, e, cs, add_meta, add_subgoals, relax_main_opaque); return apply_tactic_core(env, ios, s, e, cs, add_meta, subgoals_action, relax_main_opaque);
} }
tactic eassumption_tactic(bool relax_main_opaque) { tactic eassumption_tactic(bool relax_main_opaque) {
@ -102,13 +142,13 @@ tactic eassumption_tactic(bool relax_main_opaque) {
buffer<expr> hs; buffer<expr> hs;
get_app_args(g.get_meta(), hs); get_app_args(g.get_meta(), hs);
for (expr const & h : hs) { for (expr const & h : hs) {
r = append(r, apply_tactic_core(env, ios, s, h, false, false, relax_main_opaque)); r = append(r, apply_tactic_core(env, ios, s, h, false, IgnoreSubgoals, relax_main_opaque));
} }
return r; return r;
}); });
} }
tactic apply_tactic(elaborate_fn const & elab, expr const & e, bool relax_main_opaque) { tactic apply_tactic(elaborate_fn const & elab, expr const & e, bool rev, bool relax_main_opaque) {
return tactic([=](environment const & env, io_state const & ios, proof_state const & s) { return tactic([=](environment const & env, io_state const & ios, proof_state const & s) {
goals const & gs = s.get_goals(); goals const & gs = s.get_goals();
if (empty(gs)) if (empty(gs))
@ -122,7 +162,7 @@ tactic apply_tactic(elaborate_fn const & elab, expr const & e, bool relax_main_o
to_buffer(ecs.second, cs); to_buffer(ecs.second, cs);
to_buffer(s.get_postponed(), cs); to_buffer(s.get_postponed(), cs);
proof_state new_s(s.get_goals(), s.get_subst(), ngen, constraints()); proof_state new_s(s.get_goals(), s.get_subst(), ngen, constraints());
return apply_tactic_core(env, ios, new_s, new_e, cs, true, true, relax_main_opaque); return apply_tactic_core(env, ios, new_s, new_e, cs, true, rev ? AddRevSubgoals : AddSubgoals, relax_main_opaque);
}); });
} }
@ -135,7 +175,13 @@ void initialize_apply_tactic() {
register_tac(name({"tactic", "apply"}), register_tac(name({"tactic", "apply"}),
[](type_checker &, elaborate_fn const & fn, expr const & e, pos_info_provider const *) { [](type_checker &, elaborate_fn const & fn, expr const & e, pos_info_provider const *) {
check_tactic_expr(app_arg(e), "invalid 'apply' tactic, invalid argument"); check_tactic_expr(app_arg(e), "invalid 'apply' tactic, invalid argument");
return apply_tactic(fn, get_tactic_expr_expr(app_arg(e))); return apply_tactic(fn, get_tactic_expr_expr(app_arg(e)), false);
});
register_tac(name({"tactic", "rapply"}),
[](type_checker &, elaborate_fn const & fn, expr const & e, pos_info_provider const *) {
check_tactic_expr(app_arg(e), "invalid 'apply' tactic, invalid argument");
return apply_tactic(fn, get_tactic_expr_expr(app_arg(e)), true);
}); });
register_simple_tac(name({"tactic", "eassumption"}), register_simple_tac(name({"tactic", "eassumption"}),

View file

@ -8,7 +8,7 @@ Author: Leonardo de Moura
#include "util/lua.h" #include "util/lua.h"
#include "library/tactic/tactic.h" #include "library/tactic/tactic.h"
namespace lean { namespace lean {
tactic apply_tactic(elaborate_fn const & fn, expr const & e, bool relax_main_opaque = true); tactic apply_tactic(elaborate_fn const & fn, expr const & e, bool rev_goals = false, bool relax_main_opaque = true);
tactic eassumption_tactic(bool relax_main_opaque = true); tactic eassumption_tactic(bool relax_main_opaque = true);
void open_apply_tactic(lua_State * L); void open_apply_tactic(lua_State * L);
void initialize_apply_tactic(); void initialize_apply_tactic();

View file

@ -5,5 +5,5 @@ set_option pp.notation false
theorem foo (A : Type) (a b c : A) (Hab : a = b) (Hbc : b = c) : a = c := theorem foo (A : Type) (a b c : A) (Hab : a = b) (Hbc : b = c) : a = c :=
begin begin
apply eq.trans, apply eq.trans,
apply Hbc apply Hab
end end

View file

@ -1,5 +1,5 @@
goals1.lean:9:0: error: unsolved placeholder, unsolved subgoals goals1.lean:9:0: error: unsolved placeholder, unsolved subgoals
A : Type, a : A, b : A, c : A, Hab : eq a b, Hbc : eq b c ⊢ eq a b A : Type, a : A, b : A, c : A, Hab : eq a b, Hbc : eq b c ⊢ eq b c
goals1.lean:9:0: error: failed to add declaration 'foo' to environment, value has metavariables goals1.lean:9:0: error: failed to add declaration 'foo' to environment, value has metavariables
λ (A : Type) (a b c : A) (Hab : eq a b) (Hbc : eq b c), λ (A : Type) (a b c : A) (Hab : eq a b) (Hbc : eq b c),
?M_1 ?M_1

View file

@ -6,7 +6,7 @@ axiom H1 : a = b
axiom H2 : b = c axiom H2 : b = c
check have e1 [visible] : a = b, from H1, check have e1 [visible] : a = b, from H1,
have e2 : a = c, by apply trans; apply H2; apply e1, have e2 : a = c, by apply trans; apply e1; apply H2,
have e3 : c = a, from e2⁻¹, have e3 : c = a, from e2⁻¹,
have e4 [visible] : b = a, from e1⁻¹, have e4 [visible] : b = a, from e1⁻¹,
have e5 : b = c, from e4 ⬝ e2, have e5 : b = c, from e4 ⬝ e2,

View file

@ -4,6 +4,6 @@ open tactic
theorem foo (A : Type) (a b c : A) (Hab : a = b) (Hbc : b = c) : a = c := theorem foo (A : Type) (a b c : A) (Hab : a = b) (Hbc : b = c) : a = c :=
begin begin
apply eq.trans, apply eq.trans,
apply Hab,
apply Hbc, apply Hbc,
apply Hab
end end

View file

@ -5,21 +5,21 @@ theorem tst1 (a b : Prop) : a → b → b :=
by intro Ha; intro Hb; apply Hb by intro Ha; intro Hb; apply Hb
theorem tst2 (a b : Prop) : a → b → a ∧ b := theorem tst2 (a b : Prop) : a → b → a ∧ b :=
by intro Ha; intro Hb; apply and.intro; apply Hb; apply Ha by intro Ha; intro Hb; rapply and.intro; apply Hb; apply Ha
theorem tst3 (a b : Prop) : a → b → a ∧ b := theorem tst3 (a b : Prop) : a → b → a ∧ b :=
begin begin
intro Ha, intro Ha,
intro Hb, intro Hb,
apply and.intro, apply and.intro,
apply Ha,
apply Hb, apply Hb,
apply Ha
end end
theorem tst4 (a b : Prop) : a → b → a ∧ b := theorem tst4 (a b : Prop) : a → b → a ∧ b :=
begin begin
intros (Ha, Hb), intros (Ha, Hb),
apply and.intro, rapply and.intro,
apply Hb, apply Hb,
apply Ha apply Ha
end end

View file

@ -4,7 +4,7 @@ open tactic
theorem foo (A : Type) (a b c : A) (Hab : a = b) (Hbc : b = c) : a = c := theorem foo (A : Type) (a b c : A) (Hab : a = b) (Hbc : b = c) : a = c :=
begin begin
apply eq.trans, apply eq.trans,
apply Hbc,
rename Hab Foo, rename Hab Foo,
apply Foo apply Foo,
apply Hbc,
end end

View file

@ -2,7 +2,7 @@ import logic
open tactic open tactic
theorem tst (a b : Prop) (H : a ↔ b) : b ↔ a theorem tst (a b : Prop) (H : a ↔ b) : b ↔ a
:= by apply iff.intro; := by rapply iff.intro;
apply (assume Ha, iff.elim_left H Ha); apply (assume Ha, iff.elim_left H Ha);
apply (assume Hb, iff.elim_right H Hb) apply (assume Hb, iff.elim_right H Hb)

View file

@ -4,7 +4,7 @@ open tactic
theorem tst (a b : Prop) (H : a ↔ b) : b ↔ a theorem tst (a b : Prop) (H : a ↔ b) : b ↔ a
:= have H1 [visible] : a → b, -- We need to mark H1 as fact, otherwise it is not visible by tactics := have H1 [visible] : a → b, -- We need to mark H1 as fact, otherwise it is not visible by tactics
from iff.elim_left H, from iff.elim_left H,
by apply iff.intro; by rapply iff.intro;
apply (assume Ha, H1 Ha); apply (assume Ha, H1 Ha);
apply (assume Hb, iff.elim_right H Hb) apply (assume Hb, iff.elim_right H Hb)
@ -12,7 +12,7 @@ theorem tst2 (a b : Prop) (H : a ↔ b) : b ↔ a
:= have H1 [visible] : a → b, := have H1 [visible] : a → b,
from iff.elim_left H, from iff.elim_left H,
begin begin
apply iff.intro, rapply iff.intro,
apply (assume Ha, H1 Ha), apply (assume Ha, H1 Ha),
apply (assume Hb, iff.elim_right H Hb) apply (assume Hb, iff.elim_right H Hb)
end end

View file

@ -12,7 +12,7 @@ section
check H check H
check H2 check H2
theorem test : a = b ∧ a = a theorem test : a = b ∧ a = a
:= by apply and.intro; apply eq.refl; apply H := by apply and.intro; apply H; apply eq.refl
end end
check @test check @test

View file

@ -3,7 +3,7 @@ open tactic
theorem tst {A B : Prop} (H1 : A) (H2 : B) : A ∧ B ∧ A := theorem tst {A B : Prop} (H1 : A) (H2 : B) : A ∧ B ∧ A :=
by apply @and.intro; by apply @and.intro;
apply (show B ∧ A, from and.intro H2 H1); apply (show A, from H1);
apply (show A, from H1) apply (show B ∧ A, from and.intro H2 H1)
check @tst check @tst

View file

@ -8,7 +8,7 @@ axiom H2 : b = c
check show a = c, from H1 ⬝ H2 check show a = c, from H1 ⬝ H2
print "------------" print "------------"
check have e1 [visible] : a = b, from H1, check have e1 [visible] : a = b, from H1,
have e2 : a = c, by apply eq.trans; apply H2; apply e1, have e2 : a = c, by apply eq.trans; apply e1; apply H2,
have e3 : c = a, from e2⁻¹, have e3 : c = a, from e2⁻¹,
have e4 [visible] : b = a, from e1⁻¹, have e4 [visible] : b = a, from e1⁻¹,
show b = c, from e1⁻¹ ⬝ e2 show b = c, from e1⁻¹ ⬝ e2