feat(library/hott) add thm: to give a section of a fibration it suffices to provide it for the image of an equivalence
This commit is contained in:
parent
781f709bb4
commit
c50db9899d
1 changed files with 21 additions and 1 deletions
|
@ -193,7 +193,6 @@ namespace IsEquiv
|
|||
|
||||
--Rewrite rules
|
||||
section
|
||||
variables (Hf : IsEquiv f)
|
||||
|
||||
definition moveR_M (Hf : IsEquiv f) {x : A} {y : B} (p : x ≈ (inv f) y) : (f x ≈ y) :=
|
||||
(ap f p) ⬝ (retr f y)
|
||||
|
@ -226,6 +225,27 @@ namespace IsEquiv
|
|||
⬝ whiskerR !concat_Vp _
|
||||
⬝ !concat_1p)
|
||||
|
||||
-- The function equiv_rect says that given an equivalence f : A → B,
|
||||
-- and a hypothesis from B, one may always assume that the hypothesis
|
||||
-- is in the image of e.
|
||||
|
||||
-- In fibrational terms, if we have a fibration over B which has a section
|
||||
-- once pulled back along an equivalence f : A → B, then it has a section
|
||||
-- over all of B.
|
||||
|
||||
definition equiv_rect (Hf : IsEquiv f) (P : B -> Type) :
|
||||
(Πx, P (f x)) → (Πy, P y) :=
|
||||
(λg y, path.transport _ (retr f y) (g (f⁻¹ y)))
|
||||
|
||||
definition equiv_rect_comp (Hf : IsEquiv f) (P : B → Type)
|
||||
(df : Π (x : A), P (f x)) (x : A) : equiv_rect Hf P df (f x) ≈ df x :=
|
||||
let eq1 := (apD df (sect f x)) in
|
||||
calc equiv_rect Hf P df (f x)
|
||||
≈ path.transport P (retr f (f x)) (df (f⁻¹ (f x))) : idp
|
||||
... ≈ path.transport P (ap f (sect f x)) (df (f⁻¹ (f x))) : adj f
|
||||
... ≈ path.transport (P ∘ f) (sect f x) (df (f⁻¹ (f x))) : transport_compose
|
||||
... ≈ df x : eq1
|
||||
|
||||
end
|
||||
|
||||
end IsEquiv
|
||||
|
|
Loading…
Reference in a new issue