feat(library/algebra/intervals): add notation for intervals

This commit is contained in:
Jeremy Avigad 2015-12-26 10:45:53 -08:00
parent 395eab7c2c
commit c52ffda0e0
2 changed files with 57 additions and 0 deletions

View file

@ -7,6 +7,7 @@ Algebraic structures.
* [relation](relation.lean) * [relation](relation.lean)
* [binary](binary.lean) : binary operations * [binary](binary.lean) : binary operations
* [order](order.lean) * [order](order.lean)
* [intervals](intervals.lean)
* [lattice](lattice.lean) * [lattice](lattice.lean)
* [complete lattice](complete_lattice.lean) * [complete lattice](complete_lattice.lean)
* [group](group.lean) * [group](group.lean)

View file

@ -0,0 +1,56 @@
/-
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad
Notation for intervals and some properties.
The mnemonic: o = open, c = closed, u = unbounded. For example, Iou a b is '(a, ∞).
-/
import .order data.set
open set
namespace intervals
variables {A : Type} [order_pair A]
definition Ioo (a b : A) : set A := {x | a < x ∧ x < b}
definition Ioc (a b : A) : set A := {x | a < x ∧ x ≤ b}
definition Ico (a b : A) : set A := {x | a ≤ x ∧ x < b}
definition Icc (a b : A) : set A := {x | a ≤ x ∧ x ≤ b}
definition Iou (a : A) : set A := {x | a < x}
definition Icu (a : A) : set A := {x | a ≤ x}
definition Iuo (b : A) : set A := {x | x < b}
definition Iuc (b : A) : set A := {x | x ≤ b}
notation `'` `(` a `, ` b `)` := Ioo a b
notation `'` `(` a `, ` b `]` := Ioc a b
notation `'[` a `, ` b `)` := Ico a b
notation `'[` a `, ` b `]` := Icc a b
notation `'` `(` a `, ` `∞` `)` := Iou a
notation `'[` a `, ` `∞` `)` := Icu a
notation `'` `(` `-∞` `, ` b `)` := Iuo b
notation `'` `(` `-∞` `, ` b `]` := Iuc b
variables a b c d e f : A
/- some examples:
check '(a, b)
check '(a, b]
check '[a, b)
check '[a, b]
check '(a, ∞)
check '[a, ∞)
check '(-∞, b)
check '(-∞, b]
check '{a, b, c}
check '(a, b] ∩ '(c, ∞)
check '(-∞, b) \ ('(c, d) '[e, ∞))
-/
proposition Iou_inter_Iuo : '(a, ∞) ∩ '(-∞, b) = '(a, b) := rfl
end intervals