fix(kernel/normalizer): avoid svalue hack, use 'semantic attachments' for implementing closures, include context in the closure

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2013-12-17 14:33:42 -08:00
parent 836357c65c
commit c53233ea26
6 changed files with 162 additions and 112 deletions

View file

@ -34,42 +34,46 @@ unsigned get_normalizer_max_depth(options const & opts) {
return opts.get_unsigned(g_kernel_normalizer_max_depth, LEAN_KERNEL_NORMALIZER_MAX_DEPTH);
}
class svalue;
typedef list<svalue> value_stack; //!< Normalization stack
enum class svalue_kind { Expr, Closure, BoundedVar };
/** \brief Stack value: simple expressions, closures and bounded variables. */
class svalue {
svalue_kind m_kind;
unsigned m_bvar;
optional<expr> m_expr;
value_stack m_ctx;
typedef list<expr> value_stack;
value_stack extend(value_stack const & s, expr const & v) {
lean_assert(!is_lambda(v) && !is_pi(v) && !is_metavar(v) && !is_let(v));
return cons(v, s);
}
/**
\brief Internal value used to store closures.
This is a transient value that is only used during normalization.
*/
class closure : public value {
expr m_expr;
context m_ctx;
value_stack m_stack;
public:
svalue() {}
explicit svalue(expr const & e): m_kind(svalue_kind::Expr), m_expr(e) {}
explicit svalue(unsigned k): m_kind(svalue_kind::BoundedVar), m_bvar(k) {}
svalue(expr const & e, value_stack const & c):m_kind(svalue_kind::Closure), m_expr(e), m_ctx(c) { lean_assert(is_lambda(e)); }
svalue_kind kind() const { return m_kind; }
bool is_expr() const { return kind() == svalue_kind::Expr; }
bool is_closure() const { return kind() == svalue_kind::Closure; }
bool is_bounded_var() const { return kind() == svalue_kind::BoundedVar; }
expr const & get_expr() const { lean_assert(is_expr() || is_closure()); return *m_expr; }
value_stack const & get_ctx() const { lean_assert(is_closure()); return m_ctx; }
unsigned get_var_idx() const { lean_assert(is_bounded_var()); return m_bvar; }
closure(expr const & e, context const & ctx, value_stack const & s):m_expr(e), m_ctx(ctx), m_stack(s) {}
virtual ~closure() {}
virtual expr get_type() const { lean_unreachable(); } // LCOV_EXCL_LINE
virtual name get_name() const { return name("Closure"); }
virtual void display(std::ostream & out) const {
out << "(Closure " << m_expr << " [";
bool first = true;
for (auto v : m_stack) {
if (first) first = false; else out << " ";
out << v;
}
out << "])";
}
expr const & get_expr() const { return m_expr; }
context const & get_context() const { return m_ctx; }
value_stack const & get_stack() const { return m_stack; }
};
svalue_kind kind(svalue const & v) { return v.kind(); }
expr const & to_expr(svalue const & v) { return v.get_expr(); }
value_stack const & stack_of(svalue const & v) { return v.get_ctx(); }
unsigned to_bvar(svalue const & v) { return v.get_var_idx(); }
value_stack extend(value_stack const & s, svalue const & v) { return cons(v, s); }
expr mk_closure(expr const & e, context const & ctx, value_stack const & s) { return mk_value(*(new closure(e, ctx, s))); }
bool is_closure(expr const & e) { return is_value(e) && dynamic_cast<closure const *>(&to_value(e)) != nullptr; }
closure const & to_closure(expr const & e) { lean_assert(is_closure(e)); return static_cast<closure const &>(to_value(e)); }
/** \brief Expression normalizer. */
class normalizer::imp {
typedef std::unordered_map<expr, svalue, expr_hash_alloc, expr_eqp> cache;
typedef std::unordered_map<expr, expr, expr_hash_alloc, expr_eqp> cache;
ro_environment::weak_ref m_env;
context m_ctx;
@ -88,7 +92,7 @@ class normalizer::imp {
return ::lean::add_lift(m, s, n, m_menv.to_some_menv());
}
svalue lookup(value_stack const & s, unsigned i) {
expr lookup(value_stack const & s, unsigned i) {
unsigned j = i;
value_stack const * it1 = &s;
while (*it1) {
@ -106,72 +110,77 @@ class normalizer::imp {
freset<context> reset2(m_ctx);
m_ctx = entry_c;
unsigned k = m_ctx.size();
return svalue(reify(normalize(*(entry.get_body()), value_stack(), k), k));
return normalize(*(entry.get_body()), value_stack(), k);
} else {
return svalue(entry_c.size());
}
}
/** \brief Convert the closure \c a into an expression using the given stack in a context that contains \c k binders. */
expr reify_closure(expr const & a, value_stack const & s, unsigned k) {
lean_assert(is_lambda(a));
expr new_t = reify(normalize(abst_domain(a), s, k), k);
{
freset<cache> reset(m_cache);
return mk_lambda(abst_name(a), new_t, reify(normalize(abst_body(a), extend(s, svalue(k)), k+1), k+1));
return mk_var(entry_c.size());
}
}
/** \brief Convert the value \c v back into an expression in a context that contains \c k binders. */
expr reify(svalue const & v, unsigned k) {
check_system("normalizer");
switch (v.kind()) {
case svalue_kind::Expr: return to_expr(v);
case svalue_kind::BoundedVar: return mk_var(k - to_bvar(v) - 1);
case svalue_kind::Closure: return reify_closure(to_expr(v), stack_of(v), k);
}
lean_unreachable(); // LCOV_EXCL_LINE
expr reify(expr const & v, unsigned k) {
auto f = [&](expr const & e, unsigned DEBUG_CODE(offset)) {
lean_assert(offset == 0);
lean_assert(!is_lambda(e) && !is_pi(e) && !is_metavar(e) && !is_let(e));
if (is_var(e)) {
// de Bruijn level --> de Bruijn index
return mk_var(k - var_idx(e) - 1);
} else if (is_closure(e)) {
return reify_closure(to_closure(e), k);
} else {
return e;
}
};
return replace_fn<decltype(f)>(f)(v);
}
/** \brief Return true iff the value_stack does affect the context of a metavariable */
bool is_identity_stack(value_stack const & s, unsigned k) {
unsigned i = 0;
for (auto e : s) {
if (e.kind() != svalue_kind::BoundedVar || k - to_bvar(e) - 1 != i)
if (!is_var(e) || k - var_idx(e) - 1 != i)
return false;
++i;
}
return true;
}
/**
\brief Update the metavariable context for \c m based on the
value_stack \c s and the number of binders \c k.
\pre is_metavar(m)
*/
expr updt_metavar(expr const & m, value_stack const & s, unsigned k) {
lean_assert(is_metavar(m));
if (is_identity_stack(s, k))
return m; // nothing to be done
local_context lctx = metavar_lctx(m);
unsigned len_s = length(s);
unsigned len_ctx = m_ctx.size();
lean_assert(k >= len_ctx);
expr r;
if (k > len_ctx)
r = add_lift(m, len_s, k - len_ctx);
else
r = m;
buffer<expr> subst;
for (auto e : s) {
subst.push_back(reify(e, k));
/** \brief Convert the closure \c c into an expression in a context that contains \c k binders. */
expr reify_closure(closure const & c, unsigned k) {
expr const & e = c.get_expr();
context const & ctx = c.get_context();
value_stack const & s = c.get_stack();
freset<cache> reset1(m_cache);
freset<context> reset2(m_ctx);
m_ctx = ctx;
if (is_abstraction(e)) {
return update_abst(e, [&](expr const & d, expr const & b) {
expr new_d = reify(normalize(d, s, k), k);
expr new_b = reify(normalize(b, extend(s, mk_var(k)), k+1), k+1);
return mk_pair(new_d, new_b);
});
} else {
lean_assert(is_metavar(e));
if (is_identity_stack(s, k))
return e; // nothing to be done
local_context lctx = metavar_lctx(e);
unsigned len_s = length(s);
unsigned len_ctx = ctx.size();
lean_assert(k >= len_ctx);
expr r;
if (k > len_ctx)
r = add_lift(e, len_s, k - len_ctx);
else
r = e;
buffer<expr> subst;
for (auto v : s)
subst.push_back(reify(v, k));
std::reverse(subst.begin(), subst.end());
return instantiate(r, subst.size(), subst.data());
}
std::reverse(subst.begin(), subst.end());
return instantiate(r, subst.size(), subst.data());
}
/** \brief Normalize the expression \c a in a context composed of stack \c s and \c k binders. */
svalue normalize(expr const & a, value_stack const & s, unsigned k) {
expr normalize(expr const & a, value_stack const & s, unsigned k) {
flet<unsigned> l(m_depth, m_depth+1);
check_system("normalizer");
if (m_depth > m_max_depth)
@ -184,10 +193,10 @@ class normalizer::imp {
return it->second;
}
svalue r;
expr r;
switch (a.kind()) {
case expr_kind::MetaVar:
r = svalue(updt_metavar(a, s, k));
case expr_kind::MetaVar: case expr_kind::Pi: case expr_kind::Lambda:
r = mk_closure(a, m_ctx, s);
break;
case expr_kind::Var:
r = lookup(s, var_idx(a));
@ -195,26 +204,27 @@ class normalizer::imp {
case expr_kind::Constant: {
object const & obj = env()->get_object(const_name(a));
if (obj.is_definition() && !obj.is_opaque()) {
freset<cache> reset(m_cache);
r = normalize(obj.get_value(), value_stack(), 0);
} else {
r = svalue(a);
r = a;
}
break;
}
case expr_kind::Type: case expr_kind::Value:
r = svalue(a);
r = a;
break;
case expr_kind::App: {
svalue f = normalize(arg(a, 0), s, k);
unsigned i = 1;
unsigned n = num_args(a);
expr f = normalize(arg(a, 0), s, k);
unsigned i = 1;
unsigned n = num_args(a);
while (true) {
if (f.is_closure()) {
if (is_closure(f) && is_lambda(to_closure(f).get_expr())) {
// beta reduction
expr const & fv = to_expr(f);
expr const & fv = to_closure(f).get_expr();
{
freset<cache> reset(m_cache);
value_stack new_s = extend(stack_of(f), normalize(arg(a, i), s, k));
value_stack new_s = extend(to_closure(f).get_stack(), normalize(arg(a, i), s, k));
f = normalize(abst_body(fv), new_s, k);
}
if (i == n - 1) {
@ -224,47 +234,36 @@ class normalizer::imp {
i++;
} else {
buffer<expr> new_args;
expr new_f = reify(f, k);
new_args.push_back(new_f);
new_args.push_back(f);
for (; i < n; i++)
new_args.push_back(reify(normalize(arg(a, i), s, k), k));
if (is_value(new_f)) {
optional<expr> m = to_value(new_f).normalize(new_args.size(), new_args.data());
new_args.push_back(normalize(arg(a, i), s, k));
if (is_value(f) && !is_closure(f)) {
buffer<expr> reified_args;
for (auto arg : new_args) reified_args.push_back(reify(arg, k));
optional<expr> m = to_value(f).normalize(reified_args.size(), reified_args.data());
if (m) {
r = normalize(*m, s, k);
break;
}
}
r = svalue(mk_app(new_args));
r = mk_app(new_args);
break;
}
}
break;
}
case expr_kind::Eq: {
expr new_lhs = reify(normalize(eq_lhs(a), s, k), k);
expr new_rhs = reify(normalize(eq_rhs(a), s, k), k);
if (is_value(new_lhs) && is_value(new_rhs)) {
r = svalue(mk_bool_value(new_lhs == new_rhs));
expr new_lhs = normalize(eq_lhs(a), s, k);
expr new_rhs = normalize(eq_rhs(a), s, k);
if (is_value(new_lhs) && is_value(new_rhs) && !is_closure(new_lhs) && !is_closure(new_rhs)) {
r = mk_bool_value(new_lhs == new_rhs);
} else {
r = svalue(mk_eq(new_lhs, new_rhs));
}
break;
}
case expr_kind::Lambda:
r = svalue(a, s);
break;
case expr_kind::Pi: {
expr new_t = reify(normalize(abst_domain(a), s, k), k);
{
freset<cache> reset(m_cache);
expr new_b = reify(normalize(abst_body(a), extend(s, svalue(k)), k+1), k+1);
r = svalue(mk_pi(abst_name(a), new_t, new_b));
r = mk_eq(new_lhs, new_rhs);
}
break;
}
case expr_kind::Let: {
svalue v = normalize(let_value(a), s, k);
expr v = normalize(let_value(a), s, k);
{
freset<cache> reset(m_cache);
r = normalize(let_body(a), extend(s, v), k);

7
tests/lean/exists5.lean Normal file
View file

@ -0,0 +1,7 @@
Variable N : Type
Variables a b c : N
Variables P : N -> N -> N -> Bool
Theorem T1 (f : N -> N) (H : P (f a) b (f (f c))) : exists x y z, P x y z := ExistsIntro _ (ExistsIntro _ (ExistsIntro _ H))
Show Environment 1.

View file

@ -0,0 +1,10 @@
Set: pp::colors
Set: pp::unicode
Assumed: N
Assumed: a
Assumed: b
Assumed: c
Assumed: P
Proved: T1
Theorem T1 (f : N → N) (H : P (f a) b (f (f c))) : ∃ x y z : N, P x y z :=
ExistsIntro (f a) (ExistsIntro b (ExistsIntro (f (f c)) H))

17
tests/lean/norm1.lean Normal file
View file

@ -0,0 +1,17 @@
Variable N : Type
Variable P : N -> N -> N -> Bool
Variable a : N
Variable g : N -> N
Variable H : (N -> N -> N) -> N
Eval fun f : N -> N, (fun x y : N, g x) (f a)
Eval fun (a : N) (f : N -> N) (g : (N -> N) -> N -> N) (h : N -> N -> N),
(fun (x : N) (y : N) (z : N), h x y) (g (fun x : N, f (f x)) (f a)) (f a)
Eval fun (a b : N) (g : Bool -> N), (fun x y : Bool, g x) (a == b)
Eval fun (a : Type) (b : a -> Type) (g : Type U -> Bool), (fun x y : Type U, g x) (Pi x : a, b x)
Eval fun f : N -> N, (fun x y z : N, g x) (f a)
Eval fun f g : N -> N, (fun x y z : N, g x) (f a)
Eval fun f : N -> N, (fun x : N, fun y : N, fun z : N, P x y z) (f a)
Eval fun (f : N -> N) (a : N), (fun x : N, fun y : N, fun z : N, P x y z) (f a)
Eval fun f g : N -> N, (fun x y1 z1 : N, H ((fun x y2 z2 : N, g x) x)) (f a)
Check fun f g : N -> N, (fun x y1 z1 : N, H ((fun x y2 z2 : N, g x) x)) (f a)

View file

@ -0,0 +1,17 @@
Set: pp::colors
Set: pp::unicode
Assumed: N
Assumed: P
Assumed: a
Assumed: g
Assumed: H
λ (f : N → N) (y : N), g (f a)
λ (a : N) (f : N → N) (g : (N → N) → N → N) (h : N → N → N) (z : N), h (g (λ x : N, f (f x)) (f a)) (f a)
λ (a b : N) (g : Bool → N) (y : Bool), g (a == b)
λ (a : Type) (b : a → Type) (g : (Type U) → Bool) (y : Type U), g (Π x : a, b x)
λ (f : N → N) (y z : N), g (f a)
λ (f g : N → N) (y z : N), g (f a)
λ (f : N → N) (y z : N), P (f a) y z
λ (f : N → N) (a y z : N), P (f a) y z
λ (f g : N → N) (y1 z1 : N), H (λ y2 z2 : N, g (f a))
λ f g : N → N, (λ x y1 z1 : N, H ((λ x y2 z2 : N, g x) x)) (f a) : (N → N) → (N → N) → N → N → N

View file

@ -1,6 +1,6 @@
Definition f1 (f : Int -> Int) (x : Int) : Int := f (f (f (f x)))
Definition f2 (f : Int -> Int) (x : Int) : Int := f1 (f1 (f1 (f1 f))) x
Definition f3 (f : Int -> Int) (x : Int) : Int := f1 (f2 (f2 f)) x
Definition f3 (f : Int -> Int) (x : Int) : Int := (f1 (f1 (f2 f))) x
Variable f : Int -> Int.
Set pp::width 80.
Set lean::pp::max_depth 2000.