move files from Spectral

This commit is contained in:
Floris van Doorn 2018-09-11 18:57:19 +02:00
parent 9a17a244c9
commit c534985d3f
21 changed files with 777 additions and 182 deletions

View file

@ -1,7 +1,6 @@
/- /-
Copyright (c) 2015 Floris van Doorn. All rights reserved. Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE. Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn Authors: Floris van Doorn
Comma category Comma category

View file

@ -14,6 +14,7 @@ Common categories and constructions on categories. The following files are in th
Pushout of categories, pushout of groupoids. Pushout of categories, pushout of groupoids.
* [fundamental_groupoid](fundamental_groupoid.hlean) : The fundamental groupoid of a type * [fundamental_groupoid](fundamental_groupoid.hlean) : The fundamental groupoid of a type
* [rezk](rezk.hlean) : Rezk completion * [rezk](rezk.hlean) : Rezk completion
* [pullback](pullback.hlean) : Pulling back the structure of a precategory along a map between types. This is not about pullbacks in a 1-category.
Discrete, indiscrete or finite categories: Discrete, indiscrete or finite categories:

View file

@ -5,4 +5,4 @@ Authors: Floris van Doorn
-/ -/
import .functor .set .opposite .product .comma .sum .discrete .indiscrete .terminal .initial .order import .functor .set .opposite .product .comma .sum .discrete .indiscrete .terminal .initial .order
.pushout .fundamental_groupoid .pushout .fundamental_groupoid .pullback

View file

@ -0,0 +1,62 @@
/-
Copyright (c) 2018 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
We pull back the structure of a category B along a map between the types A and (ob B).
We shorten the word "pullback" to "pb" to keep names relatively short.
-/
import ..functor.equivalence
open category eq is_trunc is_equiv sigma function equiv prod
namespace category
open functor
definition pb_precategory [constructor] {A B : Type} (f : A → B) (C : precategory B) :
precategory A :=
precategory.mk (λa a', hom (f a) (f a')) (λa a' a'' h g, h ∘ g) (λa, ID (f a))
(λa a' a'' a''' k h g, assoc k h g) (λa a' g, id_left g) (λa a' g, id_right g)
definition pb_Precategory [constructor] {A : Type} (C : Precategory) (f : A → C) :
Precategory :=
Precategory.mk A (pb_precategory f C)
definition pb_Precategory_functor [constructor] {A : Type} (C : Precategory) (f : A → C) :
pb_Precategory C f ⇒ C :=
functor.mk f (λa a' g, g) proof (λa, idp) qed proof (λa a' a'' h g, idp) qed
definition fully_faithful_pb_Precategory_functor {A : Type} (C : Precategory)
(f : A → C) : fully_faithful (pb_Precategory_functor C f) :=
begin intro a a', apply is_equiv_id end
definition split_essentially_surjective_pb_Precategory_functor {A : Type} (C : Precategory)
(f : A → C) (H : is_split_surjective f) :
split_essentially_surjective (pb_Precategory_functor C f) :=
begin intro c, cases H c with a p, exact ⟨a, iso.iso_of_eq p⟩ end
definition is_equivalence_pb_Precategory_functor {A : Type} (C : Precategory)
(f : A → C) (H : is_split_surjective f) : is_equivalence (pb_Precategory_functor C f) :=
@(is_equivalence_of_fully_faithful_of_split_essentially_surjective _)
(fully_faithful_pb_Precategory_functor C f)
(split_essentially_surjective_pb_Precategory_functor C f H)
definition pb_Precategory_equivalence [constructor] {A : Type} (C : Precategory) (f : A → C)
(H : is_split_surjective f) : pb_Precategory C f ≃c C :=
equivalence.mk _ (is_equivalence_pb_Precategory_functor C f H)
definition pb_Precategory_equivalence_of_equiv [constructor] {A : Type} (C : Precategory)
(f : A ≃ C) : pb_Precategory C f ≃c C :=
pb_Precategory_equivalence C f (is_split_surjective_of_is_retraction f)
definition is_isomorphism_pb_Precategory_functor [constructor] {A : Type} (C : Precategory)
(f : A ≃ C) : is_isomorphism (pb_Precategory_functor C f) :=
(fully_faithful_pb_Precategory_functor C f, to_is_equiv f)
definition pb_Precategory_isomorphism [constructor] {A : Type} (C : Precategory) (f : A ≃ C) :
pb_Precategory C f ≅c C :=
isomorphism.mk _ (is_isomorphism_pb_Precategory_functor C f)
end category

View file

@ -326,5 +326,23 @@ namespace paths
{ exact v_0 ⬝ v_1} { exact v_0 ⬝ v_1}
end end
inductive all (T : Π⦃a₁ a₂ : A⦄, R a₁ a₂ → Type) : Π⦃a₁ a₂ : A⦄, paths R a₁ a₂ → Type :=
| nil {} : Π{a : A}, all T (@nil A R a)
| cons : Π{a₁ a₂ a₃ : A} {r : R a₂ a₃} {p : paths R a₁ a₂}, T r → all T p → all T (cons r p)
inductive Exists (T : Π⦃a₁ a₂ : A⦄, R a₁ a₂ → Type) : Π⦃a₁ a₂ : A⦄, paths R a₁ a₂ → Type :=
| base : Π{a₁ a₂ a₃ : A} {r : R a₂ a₃} (p : paths R a₁ a₂), T r → Exists T (cons r p)
| cons : Π{a₁ a₂ a₃ : A} (r : R a₂ a₃) {p : paths R a₁ a₂}, Exists T p → Exists T (cons r p)
inductive mem (l : R a₃ a₄) : Π⦃a₁ a₂ : A⦄, paths R a₁ a₂ → Type :=
| base : Π{a₂ : A} (p : paths R a₂ a₃), mem l (cons l p)
| cons : Π{a₁ a₂ a₃ : A} (r : R a₂ a₃) {p : paths R a₁ a₂}, mem l p → mem l (cons r p)
definition len (p : paths R a₁ a₂) : :=
begin
induction p with a a₁ a₂ a₃ r p IH,
{ exact 0 },
{ exact nat.succ IH }
end
end paths end paths

View file

@ -42,6 +42,9 @@ structure is_constant [class] (f : A → B) :=
(pt : B) (pt : B)
(eq : Π(a : A), f a = pt) (eq : Π(a : A), f a = pt)
definition merely_constant {A B : Type} (f : A → B) : Type :=
Σb, Πa, merely (f a = b)
structure is_conditionally_constant [class] (f : A → B) := structure is_conditionally_constant [class] (f : A → B) :=
(g : ∥A∥ → B) (g : ∥A∥ → B)
(eq : Π(a : A), f a = g (tr a)) (eq : Π(a : A), f a = g (tr a))
@ -171,6 +174,14 @@ namespace function
exact tr (fiber.mk (f a) p) exact tr (fiber.mk (f a) p)
end end
definition is_contr_of_is_surjective (f : A → B) (H : is_surjective f) (HA : is_contr A)
(HB : is_set B) : is_contr B :=
is_contr.mk (f !center) begin intro b, induction H b, exact ap f !is_prop.elim ⬝ p end
definition is_surjective_of_is_contr [constructor] (f : A → B) (a : A) (H : is_contr B) :
is_surjective f :=
λb, image.mk a !eq_of_is_contr
definition is_weakly_constant_ap [instance] [H : is_weakly_constant f] (a a' : A) : definition is_weakly_constant_ap [instance] [H : is_weakly_constant f] (a a' : A) :
is_weakly_constant (ap f : a = a' → f a = f a') := is_weakly_constant (ap f : a = a' → f a = f a') :=
take p q : a = a', take p q : a = a',
@ -359,6 +370,20 @@ namespace function
is_surjective f' := is_surjective f' :=
is_surjective_homotopy_closed p⁻¹ʰᵗʸ H is_surjective_homotopy_closed p⁻¹ʰᵗʸ H
definition is_surjective_factor {g : B → C} (f : A → B) (h : A → C) (H : g ∘ f ~ h) :
is_surjective h → is_surjective g :=
begin
induction H using homotopy.rec_on_idp,
intro S,
intro c,
note p := S c,
induction p,
apply tr,
fapply fiber.mk,
exact f a,
exact p
end
definition is_equiv_ap1_gen_of_is_embedding {A B : Type} (f : A → B) [is_embedding f] definition is_equiv_ap1_gen_of_is_embedding {A B : Type} (f : A → B) [is_embedding f]
{a a' : A} {b b' : B} (q : f a = b) (q' : f a' = b') : is_equiv (ap1_gen f q q') := {a a' : A} {b b' : B} (q : f a = b) (q' : f a' = b') : is_equiv (ap1_gen f q q') :=
begin begin
@ -383,6 +408,32 @@ namespace function
!loopn_succ_in⁻¹ᵉ* !loopn_succ_in⁻¹ᵉ*
end end
definition is_contr_of_is_embedding (f : A → B) (H : is_embedding f) (HB : is_prop B)
(a₀ : A) : is_contr A :=
is_contr.mk a₀ (λa, is_injective_of_is_embedding (is_prop.elim (f a₀) (f a)))
definition is_embedding_of_square {A B C D : Type} {f : A → B} {g : C → D} (h : A ≃ C)
(k : B ≃ D) (s : k ∘ f ~ g ∘ h) (Hf : is_embedding f) : is_embedding g :=
begin
apply is_embedding_homotopy_closed, exact inv_homotopy_of_homotopy_pre _ _ _ s,
apply is_embedding_compose, apply is_embedding_compose,
apply is_embedding_of_is_equiv, exact Hf, apply is_embedding_of_is_equiv
end
definition is_embedding_of_square_rev {A B C D : Type} {f : A → B} {g : C → D} (h : A ≃ C)
(k : B ≃ D) (s : k ∘ f ~ g ∘ h) (Hg : is_embedding g) : is_embedding f :=
is_embedding_of_square h⁻¹ᵉ k⁻¹ᵉ s⁻¹ʰᵗʸᵛ Hg
definition is_embedding_factor [is_set A] [is_set B] (g : B → C) (h : A → C) (H : g ∘ f ~ h) :
is_embedding h → is_embedding f :=
begin
induction H using homotopy.rec_on_idp,
intro E,
fapply is_embedding_of_is_injective,
intro x y p,
fapply @is_injective_of_is_embedding _ _ _ E _ _ (ap g p)
end
/- /-
The definitions The definitions
is_surjective_of_is_equiv is_surjective_of_is_equiv

View file

@ -724,6 +724,24 @@ namespace chain_complex
apply LES_is_equiv_of_trivial, apply HX1, apply HX2 apply LES_is_equiv_of_trivial, apply HX1, apply HX2
end end
definition LES_is_contr_of_is_embedding_of_is_surjective (n : )
(H : is_embedding (π→[n] f)) (H2 : is_surjective (π→[n+1] f)) : is_contr (π[n] (pfiber f)) :=
begin
rexact @is_contr_of_is_embedding_of_is_surjective +3 LES_of_homotopy_groups (n, 0)
(is_exact_LES_of_homotopy_groups _) proof H qed proof H2 qed
end
definition is_contr_homotopy_group_fiber {n : }
(H1 : is_embedding (π→[n] f)) (H2 : is_surjective (π→g[n+1] f)) : is_contr (π[n] (pfiber f)) :=
begin
apply @is_contr_of_is_embedding_of_is_surjective +3 LES_of_homotopy_groups (n, 0),
exact is_exact_LES_of_homotopy_groups (n, 1), exact H1, exact H2
end
definition is_contr_homotopy_group_fiber_of_is_equiv {n : }
(H1 : is_equiv (π→[n] f)) (H2 : is_equiv (π→g[n+1] f)) : is_contr (π[n] (pfiber f)) :=
is_contr_homotopy_group_fiber (is_embedding_of_is_equiv _) (is_surjective_of_is_equiv _)
end end
/- /-

View file

@ -27,6 +27,13 @@ namespace is_conn
exact is_contr_equiv_closed (trunc_equiv_trunc n H) C, exact is_contr_equiv_closed (trunc_equiv_trunc n H) C,
end end
definition is_conn_equiv_closed_rev (n : ℕ₋₂) {A B : Type} (f : A ≃ B) (H : is_conn n B) :
is_conn n A :=
is_conn_equiv_closed n f⁻¹ᵉ _
definition is_conn_of_eq {n m : ℕ₋₂} (p : n = m) {A : Type} (H : is_conn n A) : is_conn m A :=
transport (λk, is_conn k A) p H
theorem is_conn_of_le (A : Type) {n k : ℕ₋₂} (H : n ≤ k) [is_conn k A] : is_conn n A := theorem is_conn_of_le (A : Type) {n k : ℕ₋₂} (H : n ≤ k) [is_conn k A] : is_conn n A :=
is_contr_equiv_closed (trunc_trunc_equiv_left _ H) _ is_contr_equiv_closed (trunc_trunc_equiv_left _ H) _
@ -256,6 +263,7 @@ namespace is_conn
@retract_of_conn_is_conn _ _ @retract_of_conn_is_conn _ _
(arrow.arrow_hom_of_homotopy p) (arrow.is_retraction_arrow_hom_of_homotopy p) n H (arrow.arrow_hom_of_homotopy p) (arrow.is_retraction_arrow_hom_of_homotopy p) n H
/- introduction rules for connectedness -/
-- all types are -2-connected -- all types are -2-connected
definition is_conn_minus_two (A : Type) : is_conn -2 A := definition is_conn_minus_two (A : Type) : is_conn -2 A :=
_ _
@ -267,6 +275,26 @@ namespace is_conn
definition is_conn_minus_one_pointed [instance] (A : Type*) : is_conn -1 A := definition is_conn_minus_one_pointed [instance] (A : Type*) : is_conn -1 A :=
is_conn_minus_one A (tr pt) is_conn_minus_one A (tr pt)
definition is_conn_succ_intro {n : ℕ₋₂} {A : Type} (a : trunc (n.+1) A)
(H2 : Π(a a' : A), is_conn n (a = a')) : is_conn (n.+1) A :=
begin
refine is_contr_of_inhabited_prop _ _,
{ exact a },
{ apply is_trunc_succ_intro,
refine trunc.rec _, intro a, refine trunc.rec _, intro a',
exact is_contr_equiv_closed !tr_eq_tr_equiv⁻¹ᵉ _ }
end
definition is_conn_zero {A : Type} (a₀ : trunc 0 A) (p : Πa a' : A, ∥ a = a' ∥) : is_conn 0 A :=
is_conn_succ_intro a₀ (λa a', is_conn_minus_one _ (p a a'))
definition is_conn_zero_pointed {A : Type*} (p : Πa a' : A, ∥ a = a' ∥) : is_conn 0 A :=
is_conn_zero (tr pt) p
definition is_conn_zero_pointed' {A : Type*} (p : Πa : A, ∥ a = pt ∥) : is_conn 0 A :=
is_conn_zero_pointed (λa a', tconcat (p a) (tinverse (p a')))
/- connectedness of certain types -/
definition is_conn_trunc [instance] (A : Type) (n k : ℕ₋₂) [H : is_conn n A] definition is_conn_trunc [instance] (A : Type) (n k : ℕ₋₂) [H : is_conn n A]
: is_conn n (trunc k A) := : is_conn n (trunc k A) :=
is_contr_equiv_closed !trunc_trunc_equiv_trunc_trunc _ is_contr_equiv_closed !trunc_trunc_equiv_trunc_trunc _
@ -283,8 +311,60 @@ namespace is_conn
: is_conn n (ptrunc k A) := : is_conn n (ptrunc k A) :=
is_conn_trunc A n k is_conn_trunc A n k
-- the following trivial cases are solved by type class inference definition is_conn_pathover (n : ℕ₋₂) {A : Type} {B : A → Type} {a a' : A} (p : a = a') (b : B a)
(b' : B a') [is_conn (n.+1) (B a')] : is_conn n (b =[p] b') :=
is_conn_equiv_closed_rev n !pathover_equiv_tr_eq _
open sigma
lemma is_conn_sigma [instance] {A : Type} (B : A → Type) (n : ℕ₋₂)
[HA : is_conn n A] [HB : Πa, is_conn n (B a)] : is_conn n (Σa, B a) :=
begin
revert A B HA HB, induction n with n IH: intro A B HA HB,
{ apply is_conn_minus_two },
apply is_conn_succ_intro,
{ induction center (trunc (n.+1) A) with a, induction center (trunc (n.+1) (B a)) with b,
exact tr ⟨a, b⟩ },
intro a a', refine is_conn_equiv_closed_rev n !sigma_eq_equiv _,
apply IH, apply is_conn_eq, intro p, apply is_conn_pathover
/- an alternative proof of the successor case -/
-- induction center (trunc (n.+1) A) with a₀,
-- induction center (trunc (n.+1) (B a₀)) with b₀,
-- apply is_contr.mk (tr ⟨a₀, b₀⟩),
-- intro ab, induction ab with ab, induction ab with a b,
-- induction tr_eq_tr_equiv n a₀ a !is_prop.elim with p, induction p,
-- induction tr_eq_tr_equiv n b₀ b !is_prop.elim with q, induction q,
-- reflexivity
end
lemma is_conn_prod [instance] (A B : Type) (n : ℕ₋₂) [is_conn n A] [is_conn n B] :
is_conn n (A × B) :=
is_conn_equiv_closed n !sigma.equiv_prod _
lemma is_conn_fun_of_is_conn {A B : Type} (n : ℕ₋₂) (f : A → B)
[HA : is_conn n A] [HB : is_conn (n.+1) B] : is_conn_fun n f :=
λb, is_conn_equiv_closed_rev n !fiber.sigma_char _
definition is_conn_fiber_of_is_conn (n : ℕ₋₂) {A B : Type} (f : A → B) (b : B) [is_conn n A]
[is_conn (n.+1) B] : is_conn n (fiber f b) :=
is_conn_fun_of_is_conn n f b
lemma is_conn_pfiber_of_is_conn {A B : Type*} (n : ℕ₋₂) (f : A →* B)
[HA : is_conn n A] [HB : is_conn (n.+1) B] : is_conn n (pfiber f) :=
is_conn_fun_of_is_conn n f pt
definition is_conn_of_is_contr (k : ℕ₋₂) (A : Type) [is_contr A] : is_conn k A := _ definition is_conn_of_is_contr (k : ℕ₋₂) (A : Type) [is_contr A] : is_conn k A := _
definition is_conn_succ_of_is_conn_loop {n : ℕ₋₂} {A : Type*}
(H : is_conn 0 A) (H2 : is_conn n (Ω A)) : is_conn (n.+1) A :=
begin
apply is_conn_succ_intro, exact tr pt,
intros a a',
induction merely_of_minus_one_conn (is_conn_eq -1 a a') with p, induction p,
induction merely_of_minus_one_conn (is_conn_eq -1 pt a) with p, induction p,
exact H2
end
/- connected functions -/
definition is_conn_fun_of_is_equiv (k : ℕ₋₂) {A B : Type} (f : A → B) [is_equiv f] : definition is_conn_fun_of_is_equiv (k : ℕ₋₂) {A B : Type} (f : A → B) [is_equiv f] :
is_conn_fun k f := is_conn_fun k f :=
_ _
@ -292,6 +372,10 @@ namespace is_conn
definition is_conn_fun_id (k : ℕ₋₂) (A : Type) : is_conn_fun k (@id A) := definition is_conn_fun_id (k : ℕ₋₂) (A : Type) : is_conn_fun k (@id A) :=
λa, _ λa, _
definition is_conn_fun_compose (k : ℕ₋₂) {A B C : Type} {g : B → C} {f : A → B}
(Hg : is_conn_fun k g) (Hf : is_conn_fun k f) : is_conn_fun k (g ∘ f) :=
λc, is_conn_equiv_closed_rev k (fiber_compose_equiv g f c) _
-- Lemma 7.5.14 -- Lemma 7.5.14
theorem is_equiv_trunc_functor_of_is_conn_fun [instance] {A B : Type} (n : ℕ₋₂) (f : A → B) theorem is_equiv_trunc_functor_of_is_conn_fun [instance] {A B : Type} (n : ℕ₋₂) (f : A → B)
[H : is_conn_fun n f] : is_equiv (trunc_functor n f) := [H : is_conn_fun n f] : is_equiv (trunc_functor n f) :=
@ -303,10 +387,14 @@ namespace is_conn
{ intro a, induction a with a, esimp, rewrite [center_eq (tr (fiber.mk a idp))]} { intro a, induction a with a, esimp, rewrite [center_eq (tr (fiber.mk a idp))]}
end end
theorem trunc_equiv_trunc_of_is_conn_fun {A B : Type} (n : ℕ₋₂) (f : A → B) definition trunc_equiv_trunc_of_is_conn_fun {A B : Type} (n : ℕ₋₂) (f : A → B)
[H : is_conn_fun n f] : trunc n A ≃ trunc n B := [H : is_conn_fun n f] : trunc n A ≃ trunc n B :=
equiv.mk (trunc_functor n f) (is_equiv_trunc_functor_of_is_conn_fun n f) equiv.mk (trunc_functor n f) (is_equiv_trunc_functor_of_is_conn_fun n f)
definition ptrunc_pequiv_ptrunc_of_is_conn_fun {A B : Type*} (n : ℕ₋₂) (f : A →* B)
[H : is_conn_fun n f] : ptrunc n A ≃* ptrunc n B :=
pequiv_of_pmap (ptrunc_functor n f) (is_equiv_trunc_functor_of_is_conn_fun n f)
definition is_conn_fun_trunc_functor_of_le {n k : ℕ₋₂} {A B : Type} (f : A → B) (H : k ≤ n) definition is_conn_fun_trunc_functor_of_le {n k : ℕ₋₂} {A B : Type} (f : A → B) (H : k ≤ n)
[H2 : is_conn_fun k f] : is_conn_fun k (trunc_functor n f) := [H2 : is_conn_fun k f] : is_conn_fun k (trunc_functor n f) :=
begin begin
@ -362,57 +450,6 @@ namespace is_conn
rewrite -of_nat_add_two, exact _ rewrite -of_nat_add_two, exact _
end end
definition is_conn_equiv_closed_rev (n : ℕ₋₂) {A B : Type} (f : A ≃ B) (H : is_conn n B) :
is_conn n A :=
is_conn_equiv_closed n f⁻¹ᵉ _
definition is_conn_succ_intro {n : ℕ₋₂} {A : Type} (a : trunc (n.+1) A)
(H2 : Π(a a' : A), is_conn n (a = a')) : is_conn (n.+1) A :=
begin
refine is_contr_of_inhabited_prop _ _,
{ exact a },
{ apply is_trunc_succ_intro,
refine trunc.rec _, intro a, refine trunc.rec _, intro a',
exact is_contr_equiv_closed !tr_eq_tr_equiv⁻¹ᵉ _ }
end
definition is_conn_pathover (n : ℕ₋₂) {A : Type} {B : A → Type} {a a' : A} (p : a = a') (b : B a)
(b' : B a') [is_conn (n.+1) (B a')] : is_conn n (b =[p] b') :=
is_conn_equiv_closed_rev n !pathover_equiv_tr_eq _
open sigma
lemma is_conn_sigma [instance] {A : Type} (B : A → Type) (n : ℕ₋₂)
[HA : is_conn n A] [HB : Πa, is_conn n (B a)] : is_conn n (Σa, B a) :=
begin
revert A B HA HB, induction n with n IH: intro A B HA HB,
{ apply is_conn_minus_two },
apply is_conn_succ_intro,
{ induction center (trunc (n.+1) A) with a, induction center (trunc (n.+1) (B a)) with b,
exact tr ⟨a, b⟩ },
intro a a', refine is_conn_equiv_closed_rev n !sigma_eq_equiv _,
apply IH, apply is_conn_eq, intro p, apply is_conn_pathover
/- an alternative proof of the successor case -/
-- induction center (trunc (n.+1) A) with a₀,
-- induction center (trunc (n.+1) (B a₀)) with b₀,
-- apply is_contr.mk (tr ⟨a₀, b₀⟩),
-- intro ab, induction ab with ab, induction ab with a b,
-- induction tr_eq_tr_equiv n a₀ a !is_prop.elim with p, induction p,
-- induction tr_eq_tr_equiv n b₀ b !is_prop.elim with q, induction q,
-- reflexivity
end
lemma is_conn_prod [instance] (A B : Type) (n : ℕ₋₂) [is_conn n A] [is_conn n B] :
is_conn n (A × B) :=
is_conn_equiv_closed n !sigma.equiv_prod _
lemma is_conn_fun_of_is_conn {A B : Type} (n : ℕ₋₂) (f : A → B)
[HA : is_conn n A] [HB : is_conn (n.+1) B] : is_conn_fun n f :=
λb, is_conn_equiv_closed_rev n !fiber.sigma_char _
lemma is_conn_pfiber {A B : Type*} (n : ℕ₋₂) (f : A →* B)
[HA : is_conn n A] [HB : is_conn (n.+1) B] : is_conn n (pfiber f) :=
is_conn_fun_of_is_conn n f pt
definition is_conn_fun_trunc_elim_of_le {n k : ℕ₋₂} {A B : Type} [is_trunc n B] (f : A → B) definition is_conn_fun_trunc_elim_of_le {n k : ℕ₋₂} {A B : Type} [is_trunc n B] (f : A → B)
(H : k ≤ n) [H2 : is_conn_fun k f] : is_conn_fun k (trunc.elim f : trunc n A → B) := (H : k ≤ n) [H2 : is_conn_fun k f] : is_conn_fun k (trunc.elim f : trunc n A → B) :=
begin begin
@ -545,12 +582,173 @@ section
definition is_trunc_ptruncconntype [instance] {n k : ℕ₋₂} (X : n-Type*[k]) : definition is_trunc_ptruncconntype [instance] {n k : ℕ₋₂} (X : n-Type*[k]) :
is_trunc n (ptruncconntype._trans_of_to_pconntype X) := is_trunc n (ptruncconntype._trans_of_to_pconntype X) :=
trunctype.struct X trunctype.struct X
end
definition ptruncconntype_eq {n k : ℕ₋₂} {X Y : n-Type*[k]} (p : X ≃* Y) : X = Y := namespace is_conn
open sigma sigma.ops prod prod.ops
definition pconntype.sigma_char [constructor] (k : ℕ₋₂) :
Type*[k] ≃ Σ(X : Type*), is_conn k X :=
equiv.MK (λX, ⟨pconntype.to_pType X, _⟩)
(λX, pconntype.mk (carrier X.1) X.2 pt)
begin intro X, induction X with X HX, induction X, reflexivity end
begin intro X, induction X, reflexivity end
definition is_embedding_pconntype_to_pType (k : ℕ₋₂) : is_embedding (@pconntype.to_pType k) :=
begin begin
induction X with X Xt Xp Xc, induction Y with Y Yt Yp Yc, intro X Y, fapply is_equiv_of_equiv_of_homotopy,
note q := pType_eq_elim (eq_of_pequiv p), { exact eq_equiv_fn_eq (pconntype.sigma_char k) _ _ ⬝e subtype_eq_equiv _ _ },
cases q with r s, esimp at *, induction r, intro p, induction p, reflexivity
exact ap0111 (ptruncconntype.mk X) !is_prop.elim (eq_of_pathover_idp s) !is_prop.elim
end end
definition pconntype_eq_equiv {k : ℕ₋₂} (X Y : Type*[k]) : (X = Y) ≃ (X ≃* Y) :=
equiv.mk _ (is_embedding_pconntype_to_pType k X Y) ⬝e pType_eq_equiv X Y
definition pconntype_eq {k : ℕ₋₂} {X Y : Type*[k]} (e : X ≃* Y) : X = Y :=
(pconntype_eq_equiv X Y)⁻¹ᵉ e
definition ptruncconntype.sigma_char [constructor] (n k : ℕ₋₂) :
n-Type*[k] ≃ Σ(X : Type*), is_trunc n X × is_conn k X :=
equiv.MK (λX, ⟨ptruncconntype._trans_of_to_pconntype_1 X, (_, _)⟩)
(λX, ptruncconntype.mk (carrier X.1) X.2.1 pt X.2.2)
begin intro X, induction X with X HX, induction HX, induction X, reflexivity end
begin intro X, induction X, reflexivity end
definition ptruncconntype.sigma_char_pconntype [constructor] (n k : ℕ₋₂) :
n-Type*[k] ≃ Σ(X : Type*[k]), is_trunc n X :=
equiv.MK (λX, ⟨ptruncconntype.to_pconntype X, _⟩)
(λX, ptruncconntype.mk (pconntype._trans_of_to_pType X.1) X.2 pt _)
begin intro X, induction X with X HX, induction HX, induction X, reflexivity end
begin intro X, induction X, reflexivity end
definition is_embedding_ptruncconntype_to_pconntype (n k : ℕ₋₂) :
is_embedding (@ptruncconntype.to_pconntype n k) :=
begin
intro X Y, fapply is_equiv_of_equiv_of_homotopy,
{ exact eq_equiv_fn_eq (ptruncconntype.sigma_char_pconntype n k) _ _ ⬝e subtype_eq_equiv _ _ },
intro p, induction p, reflexivity
end end
definition ptruncconntype_eq_equiv {n k : ℕ₋₂} (X Y : n-Type*[k]) : (X = Y) ≃ (X ≃* Y) :=
equiv.mk _ (is_embedding_ptruncconntype_to_pconntype n k X Y) ⬝e pconntype_eq_equiv X Y
definition ptruncconntype_eq {n k : ℕ₋₂} {X Y : n-Type*[k]} (e : X ≃* Y) : X = Y :=
(ptruncconntype_eq_equiv X Y)⁻¹ᵉ e
definition ptruncconntype_functor [constructor] {n n' k k' : ℕ₋₂} (p : n = n') (q : k = k')
(X : n-Type*[k]) : n'-Type*[k'] :=
ptruncconntype.mk X (is_trunc_of_eq p _) pt (is_conn_of_eq q _)
definition ptruncconntype_equiv [constructor] {n n' k k' : ℕ₋₂} (p : n = n') (q : k = k') :
n-Type*[k] ≃ n'-Type*[k'] :=
equiv.MK (ptruncconntype_functor p q) (ptruncconntype_functor p⁻¹ q⁻¹)
(λX, ptruncconntype_eq pequiv.rfl) (λX, ptruncconntype_eq pequiv.rfl)
/- the k-connected cover of X, the fiber of the map X → ∥X∥ₖ. -/
open trunc_index
definition connect (k : ) (X : Type*) : Type* :=
pfiber (ptr k X)
definition is_conn_connect (k : ) (X : Type*) : is_conn k (connect k X) :=
is_conn_fun_tr k X (tr pt)
definition connconnect [constructor] (k : ) (X : Type*) : Type*[k] :=
pconntype.mk (connect k X) (is_conn_connect k X) pt
definition connect_intro [constructor] {k : } {X : Type*} {Y : Type*} (H : is_conn k X)
(f : X →* Y) : X →* connect k Y :=
pmap.mk (λx, fiber.mk (f x) (is_conn.elim (k.-1) _ (ap tr (respect_pt f)) x))
begin
fapply fiber_eq, exact respect_pt f, apply is_conn.elim_β
end
definition ppoint_connect_intro [constructor] {k : } {X : Type*} {Y : Type*} (H : is_conn k X)
(f : X →* Y) : ppoint (ptr k Y) ∘* connect_intro H f ~* f :=
begin
induction f with f f₀, induction Y with Y y₀, esimp at (f,f₀), induction f₀,
fapply phomotopy.mk,
{ intro x, reflexivity },
{ symmetry, esimp, apply point_fiber_eq }
end
definition connect_intro_ppoint [constructor] {k : } {X : Type*} {Y : Type*} (H : is_conn k X)
(f : X →* connect k Y) : connect_intro H (ppoint (ptr k Y) ∘* f) ~* f :=
begin
cases f with f f₀,
fapply phomotopy.mk,
{ intro x, fapply fiber_eq, reflexivity,
refine @is_conn.elim (k.-1) _ _ _ (λx', !is_trunc_eq) _ x,
refine !is_conn.elim_β ⬝ _,
refine _ ⬝ !idp_con⁻¹,
symmetry, refine _ ⬝ !con_idp, exact fiber_eq_pr2 f₀ },
{ esimp, refine whisker_left _ !fiber_eq_eta ⬝ !fiber_eq_con ⬝ apd011 fiber_eq !idp_con _, esimp,
apply eq_pathover_constant_left,
refine whisker_right _ (whisker_right _ (whisker_right _ !is_conn.elim_β)) ⬝pv _,
esimp [connect], refine _ ⬝vp !con_idp,
apply move_bot_of_left, refine !idp_con ⬝ !con_idp⁻¹ ⬝ph _,
refine !con.assoc ⬝ !con.assoc ⬝pv _, apply whisker_tl,
note r := eq_bot_of_square (transpose (whisker_left_idp_square (fiber_eq_pr2 f₀))⁻¹ᵛ),
refine !con.assoc⁻¹ ⬝ whisker_right _ r⁻¹ ⬝pv _, clear r,
apply move_top_of_left,
refine whisker_right_idp (ap_con tr idp (ap point f₀))⁻¹ᵖ ⬝pv _,
exact (ap_con_idp_left tr (ap point f₀))⁻¹ʰ }
end
definition connect_intro_equiv [constructor] {k : } {X : Type*} (Y : Type*) (H : is_conn k X) :
(X →* connect k Y) ≃ (X →* Y) :=
begin
fapply equiv.MK,
{ intro f, exact ppoint (ptr k Y) ∘* f },
{ intro g, exact connect_intro H g },
{ intro g, apply eq_of_phomotopy, exact ppoint_connect_intro H g },
{ intro f, apply eq_of_phomotopy, exact connect_intro_ppoint H f }
end
definition connect_intro_pequiv [constructor] {k : } {X : Type*} (Y : Type*) (H : is_conn k X) :
ppmap X (connect k Y) ≃* ppmap X Y :=
pequiv_of_equiv (connect_intro_equiv Y H) (eq_of_phomotopy !pcompose_pconst)
definition connect_pequiv {k : } {X : Type*} (H : is_conn k X) : connect k X ≃* X :=
@pfiber_pequiv_of_is_contr _ _ (ptr k X) H
definition loop_connect (k : ) (X : Type*) : Ω (connect (k+1) X) ≃* connect k (Ω X) :=
loop_pfiber (ptr (k+1) X) ⬝e*
pfiber_pequiv_of_square pequiv.rfl (loop_ptrunc_pequiv k X)
(phomotopy_of_phomotopy_pinv_left (ap1_ptr k X))
definition loopn_connect (k : ) (X : Type*) : Ω[k+1] (connect k X) ≃* Ω[k+1] X :=
loopn_pfiber (k+1) (ptr k X) ⬝e*
@pfiber_pequiv_of_is_contr _ _ _ (@is_contr_loop_of_is_trunc (k+1) _ !is_trunc_trunc)
definition is_conn_of_is_conn_succ_nat (n : ) (A : Type) [is_conn (n+1) A] : is_conn n A :=
is_conn_of_is_conn_succ n A
definition connect_functor (k : ) {X Y : Type*} (f : X →* Y) : connect k X →* connect k Y :=
pfiber_functor f (ptrunc_functor k f) (ptr_natural k f)⁻¹*
definition connect_intro_pequiv_natural {k : } {X X' : Type*} {Y Y' : Type*} (f : X' →* X)
(g : Y →* Y') (H : is_conn k X) (H' : is_conn k X') :
psquare (connect_intro_pequiv Y H) (connect_intro_pequiv Y' H')
(ppcompose_left (connect_functor k g) ∘* ppcompose_right f)
(ppcompose_left g ∘* ppcompose_right f) :=
begin
refine _ ⬝v* _, exact connect_intro_pequiv Y H',
{ fapply phomotopy.mk,
{ intro h, apply eq_of_phomotopy, apply passoc },
{ xrewrite [▸*, pcompose_right_eq_of_phomotopy, pcompose_left_eq_of_phomotopy,
-+eq_of_phomotopy_trans],
apply ap eq_of_phomotopy, apply passoc_pconst_middle }},
{ fapply phomotopy.mk,
{ intro h, apply eq_of_phomotopy,
refine !passoc⁻¹* ⬝* pwhisker_right h (ppoint_natural _ _ _) ⬝* !passoc },
{ xrewrite [▸*, +pcompose_left_eq_of_phomotopy, -+eq_of_phomotopy_trans],
apply ap eq_of_phomotopy,
refine !trans_assoc ⬝ idp ◾** !passoc_pconst_right ⬝ _,
refine !trans_assoc ⬝ idp ◾** !pcompose_pconst_phomotopy ⬝ _,
apply symm_trans_eq_of_eq_trans, symmetry, apply passoc_pconst_right }}
end
end is_conn

View file

@ -215,6 +215,17 @@ end
exact ptrunc_elim_phomotopy k !ap1_susp_elim, exact ptrunc_elim_phomotopy k !ap1_susp_elim,
end end
definition freudenthal_pequiv_trunc_index' (A : Type*) (n : ) (k : ℕ₋₂) [HA : is_conn n A]
(H : k ≤ of_nat (2 * n)) : ptrunc k A ≃* ptrunc k (Ω (susp A)) :=
begin
assert lem : Π(l : ℕ₋₂), l ≤ 0 → ptrunc l A ≃* ptrunc l (Ω (susp A)),
{ intro l H', exact ptrunc_pequiv_ptrunc_of_le H' (freudenthal_pequiv (zero_le (2 * n)) A) },
cases k with k, { exact lem -2 (minus_two_le 0) },
cases k with k, { exact lem -1 (succ_le_succ (minus_two_le -1)) },
rewrite [-of_nat_add_two at *, add_two_sub_two at HA],
exact freudenthal_pequiv (le_of_of_nat_le_of_nat H) A
end
namespace susp namespace susp
definition iterate_susp_stability_pequiv_of_is_conn_0 (A : Type*) {k n : } [is_conn 0 A] definition iterate_susp_stability_pequiv_of_is_conn_0 (A : Type*) {k n : } [is_conn 0 A]
@ -272,4 +283,5 @@ namespace susp
ptrunc_pequiv_ptrunc _ (loopn_pequiv_loopn _ !iterate_susp_succ_in)} ptrunc_pequiv_ptrunc _ (loopn_pequiv_loopn _ !iterate_susp_succ_in)}
end end
end susp end susp

View file

@ -407,6 +407,23 @@ namespace equiv
... = df x : by rewrite (apdt df (left_inv f x)) ... = df x : by rewrite (apdt df (left_inv f x))
end end
definition rec_eq_of_equiv {A : Type} {P : A → A → Type} (e : Πa a', a = a' ≃ P a a')
{a a' : A} (Q : P a a' → Type) (H : Π(q : a = a'), Q (e a a' q)) :
Π(p : P a a'), Q p :=
equiv_rect (e a a') Q H
definition rec_idp_of_equiv {A : Type} {P : A → A → Type} (e : Πa a', a = a' ≃ P a a') {a : A}
(r : P a a) (s : e a a idp = r) (Q : Πa', P a a' → Type) (H : Q a r) ⦃a' : A⦄ (p : P a a') :
Q a' p :=
rec_eq_of_equiv e _ begin intro q, induction q, induction s, exact H end p
definition rec_idp_of_equiv_idp {A : Type} {P : A → A → Type} (e : Πa a', a = a' ≃ P a a') {a : A}
(r : P a a) (s : e a a idp = r) (Q : Πa', P a a' → Type) (H : Q a r) :
rec_idp_of_equiv e r s Q H r = H :=
begin
induction s, refine !is_equiv_rect_comp ⬝ _, reflexivity
end
section section
variables {A B : Type} (f : A ≃ B) {a : A} {b : B} variables {A B : Type} (f : A ≃ B) {a : A} {b : B}

View file

@ -314,7 +314,7 @@ namespace is_trunc
(HA : is_prop A) (HB : is_prop B) : A ≃ B := (HA : is_prop A) (HB : is_prop B) : A ≃ B :=
equiv.mk f (is_equiv_of_is_prop f g _ _) equiv.mk f (is_equiv_of_is_prop f g _ _)
definition equiv_of_iff_of_is_prop [unfold 5] (HA : is_prop A) (HB : is_prop B) (H : A ↔ B) : definition equiv_of_iff_of_is_prop [unfold 5] (H : A ↔ B) (HA : is_prop A) (HB : is_prop B) :
A ≃ B := A ≃ B :=
equiv_of_is_prop (iff.elim_left H) (iff.elim_right H) _ _ equiv_of_is_prop (iff.elim_left H) (iff.elim_right H) _ _

View file

@ -15,19 +15,6 @@ namespace is_equiv
variables {A B : Type} (f : A → B) [H : is_equiv f] variables {A B : Type} (f : A → B) [H : is_equiv f]
include H include H
/- is_equiv f is a mere proposition -/ /- is_equiv f is a mere proposition -/
definition is_contr_fiber_of_is_equiv [instance] (b : B) : is_contr (fiber f b) :=
is_contr.mk
(fiber.mk (f⁻¹ b) (right_inv f b))
(λz, fiber.rec_on z (λa p,
fiber_eq ((ap f⁻¹ p)⁻¹ ⬝ left_inv f a) (calc
right_inv f b = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ ((ap (f ∘ f⁻¹) p) ⬝ right_inv f b)
: by rewrite inv_con_cancel_left
... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ (right_inv f (f a) ⬝ p) : by rewrite ap_con_eq_con
... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ (ap f (left_inv f a) ⬝ p) : by rewrite [adj f]
... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ ap f (left_inv f a) ⬝ p : by rewrite con.assoc
... = (ap f (ap f⁻¹ p))⁻¹ ⬝ ap f (left_inv f a) ⬝ p : by rewrite ap_compose
... = ap f (ap f⁻¹ p)⁻¹ ⬝ ap f (left_inv f a) ⬝ p : by rewrite ap_inv
... = ap f ((ap f⁻¹ p)⁻¹ ⬝ left_inv f a) ⬝ p : by rewrite ap_con)))
definition is_contr_right_inverse : is_contr (Σ(g : B → A), f ∘ g ~ id) := definition is_contr_right_inverse : is_contr (Σ(g : B → A), f ∘ g ~ id) :=
begin begin

View file

@ -138,7 +138,8 @@ namespace fiber
begin intro x, induction x with a p, esimp at p, cases p, reflexivity end begin intro x, induction x with a p, esimp at p, cases p, reflexivity end
/- the general functoriality between fibers -/ /- the general functoriality between fibers -/
-- todo: show that this is an equivalence if g and h are, and use that for the special cases below -- todo: transpose the hsquare in fiber_functor?
-- todo: show that the underlying map of fiber_equiv_of_square is fiber_functor
definition fiber_functor [constructor] {A A' B B' : Type} {f : A → B} {f' : A' → B'} definition fiber_functor [constructor] {A A' B B' : Type} {f : A → B} {f' : A' → B'}
{b : B} {b' : B'} (g : A → A') (h : B → B') (H : hsquare g h f f') (p : h b = b') {b : B} {b' : B'} (g : A → A') (h : B → B') (H : hsquare g h f f') (p : h b = b')
(x : fiber f b) : fiber f' b' := (x : fiber f b) : fiber f' b' :=
@ -175,6 +176,17 @@ namespace fiber
... ≃ Σa b, f a = b : sigma_comm_equiv ... ≃ Σa b, f a = b : sigma_comm_equiv
... ≃ A : sigma_equiv_of_is_contr_right ... ≃ A : sigma_equiv_of_is_contr_right
definition fiber_compose_equiv {A B C : Type} (g : B → C) (f : A → B) (c : C) :
fiber (g ∘ f) c ≃ Σ(x : fiber g c), fiber f (point x) :=
begin
fapply equiv.MK,
{ intro x, exact ⟨fiber.mk (f (point x)) (point_eq x), fiber.mk (point x) idp⟩ },
{ intro x, exact fiber.mk (point x.2) (ap g (point_eq x.2) ⬝ point_eq x.1) },
{ intro x, induction x with x₁ x₂, induction x₁ with b p, induction x₂ with a q,
induction p, esimp at q, induction q, reflexivity },
{ intro x, induction x with a p, induction p, reflexivity }
end
-- pre and post composition with equivalences -- pre and post composition with equivalences
variable (f) variable (f)
protected definition equiv_postcompose [constructor] {B' : Type} (g : B ≃ B') --[H : is_equiv g] protected definition equiv_postcompose [constructor] {B' : Type} (g : B ≃ B') --[H : is_equiv g]
@ -198,7 +210,7 @@ namespace fiber
... ≃ fiber f b : fiber.sigma_char ... ≃ fiber f b : fiber.sigma_char
definition fiber_equiv_of_square {A B C D : Type} {b : B} {d : D} {f : A → B} {g : C → D} definition fiber_equiv_of_square {A B C D : Type} {b : B} {d : D} {f : A → B} {g : C → D}
(h : A ≃ C) (k : B ≃ D) (s : k ∘ f ~ g ∘ h) (p : k b = d) : fiber f b ≃ fiber g d := (h : A ≃ C) (k : B ≃ D) (s : hsquare f g h k) (p : k b = d) : fiber f b ≃ fiber g d :=
calc fiber f b ≃ fiber (k ∘ f) (k b) : fiber.equiv_postcompose calc fiber f b ≃ fiber (k ∘ f) (k b) : fiber.equiv_postcompose
... ≃ fiber (k ∘ f) d : fiber_equiv_basepoint (k ∘ f) p ... ≃ fiber (k ∘ f) d : fiber_equiv_basepoint (k ∘ f) p
... ≃ fiber (g ∘ h) d : fiber_equiv_of_homotopy s d ... ≃ fiber (g ∘ h) d : fiber_equiv_of_homotopy s d
@ -208,6 +220,14 @@ namespace fiber
(s : f ~ g ∘ h) : fiber f b ≃ fiber g b := (s : f ~ g ∘ h) : fiber f b ≃ fiber g b :=
fiber_equiv_of_square h erfl s idp fiber_equiv_of_square h erfl s idp
definition is_contr_fiber_equiv [instance] (f : A ≃ B) (b : B) : is_contr (fiber f b) :=
is_contr_equiv_closed
(fiber_equiv_of_homotopy (to_left_inv f)⁻¹ʰᵗʸ _ ⬝e fiber.equiv_postcompose f f⁻¹ᵉ b)
!is_contr_fiber_id
definition is_contr_fiber_of_is_equiv [instance] [is_equiv f] (b : B) : is_contr (fiber f b) :=
is_contr_fiber_equiv (equiv.mk f _) b
definition fiber_star_equiv [constructor] (A : Type) : fiber (λx : A, star) star ≃ A := definition fiber_star_equiv [constructor] (A : Type) : fiber (λx : A, star) star ≃ A :=
begin begin
fapply equiv.MK, fapply equiv.MK,
@ -435,7 +455,7 @@ namespace fiber
end end
definition is_contr_pfiber_pid (A : Type*) : is_contr (pfiber (pid A)) := definition is_contr_pfiber_pid (A : Type*) : is_contr (pfiber (pid A)) :=
is_contr_fiber_id A pt by exact is_contr_fiber_id A pt
definition pfiber_functor [constructor] {A A' B B' : Type*} {f : A →* B} {f' : A' →* B'} definition pfiber_functor [constructor] {A A' B B' : Type*} {f : A →* B} {f' : A' →* B'}
(g : A →* A') (h : B →* B') (H : psquare g h f f') : pfiber f →* pfiber f' := (g : A →* A') (h : B →* B') (H : psquare g h f f') : pfiber f →* pfiber f' :=
@ -470,3 +490,7 @@ definition is_contr_fun [reducible] (f : A → B) := is_trunc_fun -2 f
definition is_trunc_fun_id (k : ℕ₋₂) (A : Type) : is_trunc_fun k (@id A) := definition is_trunc_fun_id (k : ℕ₋₂) (A : Type) : is_trunc_fun k (@id A) :=
λa, is_trunc_of_is_contr _ _ !is_contr_fiber_id λa, is_trunc_of_is_contr _ _ !is_contr_fiber_id
definition is_trunc_fun_compose (k : ℕ₋₂) {A B C : Type} {g : B → C} {f : A → B}
(Hg : is_trunc_fun k g) (Hf : is_trunc_fun k f) : is_trunc_fun k (g ∘ f) :=
λc, is_trunc_equiv_closed_rev k (fiber_compose_equiv g f c) _

View file

@ -135,12 +135,11 @@ theorem val_lt : Π i : fin n, val i < n
lemma max_lt (i j : fin n) : max i j < n := lemma max_lt (i j : fin n) : max i j < n :=
max_lt (is_lt i) (is_lt j) max_lt (is_lt i) (is_lt j)
definition lift [constructor] : fin n → Π m : nat, fin (n + m) definition lift [constructor] (x : fin n) (m : ) : fin (n + m) :=
| (mk v h) m := mk v (lt_add_of_lt_right h m) fin.mk x (lt_add_of_lt_right (is_lt x) m)
definition lift_succ [constructor] (i : fin n) : fin (nat.succ n) := definition lift_succ [constructor] ⦃n : ℕ⦄ (x : fin n) : fin (nat.succ n) :=
have r : fin (n+1), from lift i 1, fin.mk x (le.step (is_lt x))
r
definition maxi [reducible] : fin (succ n) := definition maxi [reducible] : fin (succ n) :=
mk n !lt_succ_self mk n !lt_succ_self
@ -219,7 +218,7 @@ lemma lift_fun_eq {f : fin n → fin n} {i : fin n} :
lift_fun f (lift_succ i) = lift_succ (f i) := lift_fun f (lift_succ i) = lift_succ (f i) :=
begin begin
rewrite [lift_fun_of_ne_max lift_succ_ne_max], do 2 congruence, rewrite [lift_fun_of_ne_max lift_succ_ne_max], do 2 congruence,
apply eq_of_veq, esimp, rewrite -val_lift, apply eq_of_veq, reflexivity
end end
lemma lift_fun_of_inj {f : fin n → fin n} : is_embedding f → is_embedding (lift_fun f) := lemma lift_fun_of_inj {f : fin n → fin n} : is_embedding f → is_embedding (lift_fun f) :=
@ -238,8 +237,8 @@ begin
rewrite [lift_fun_of_ne_max Pinmax, lift_fun_of_ne_max Pjnmax], rewrite [lift_fun_of_ne_max Pinmax, lift_fun_of_ne_max Pjnmax],
intro Peq, apply eq_of_veq, intro Peq, apply eq_of_veq,
cases i with i ilt, cases j with j jlt, esimp at *, cases i with i ilt, cases j with j jlt, esimp at *,
fapply veq_of_eq, apply is_injective_of_is_embedding, fapply veq_of_eq, apply @is_injective_of_is_embedding _ _ f,
apply @is_injective_of_is_embedding _ _ lift_succ _ _ _ Peq, apply @is_injective_of_is_embedding _ _ (@lift_succ _) _ _ _ Peq,
end end
lemma lift_fun_inj : is_embedding (@lift_fun n) := lemma lift_fun_inj : is_embedding (@lift_fun n) :=
@ -329,9 +328,9 @@ lemma val_succ : Π (i : fin n), val (succ i) = nat.succ (val i)
lemma succ_max : fin.succ maxi = (@maxi (nat.succ n)) := rfl lemma succ_max : fin.succ maxi = (@maxi (nat.succ n)) := rfl
lemma lift_succ.comm : lift_succ ∘ (@succ n) = succ ∘ lift_succ := lemma lift_succ.comm : @lift_succ _ ∘ (@succ n) = succ ∘ @lift_succ _ :=
eq_of_homotopy take i, eq_of_homotopy take i,
eq_of_veq (begin rewrite [↑lift_succ, -val_lift, *val_succ, -val_lift] end) eq_of_veq (begin rewrite [↑lift_succ, *val_succ] end)
definition elim0 {C : fin 0 → Type} : Π i : fin 0, C i definition elim0 {C : fin 0 → Type} : Π i : fin 0, C i
| (mk v h) := absurd h !not_lt_zero | (mk v h) := absurd h !not_lt_zero
@ -388,9 +387,7 @@ begin
{ intro ilt', esimp[val_inj], apply concat, { intro ilt', esimp[val_inj], apply concat,
apply ap (λ x, eq.rec_on x _), esimp[eq_of_veq, rfl], reflexivity, apply ap (λ x, eq.rec_on x _), esimp[eq_of_veq, rfl], reflexivity,
have H : ilt = ilt', by apply is_prop.elim, cases H, have H : ilt = ilt', by apply is_prop.elim, cases H,
have H' : is_prop.elim (lt_add_of_lt_right ilt 1) (lt_add_of_lt_right ilt 1) = idp, apply ap (λx, eq.rec_on x _), apply ap02, apply is_prop_elim_self },
by apply is_prop.elim,
krewrite H' },
{ intro a, exact absurd ilt a }, { intro a, exact absurd ilt a },
end end
@ -522,7 +519,7 @@ begin
... ≃ fin 0 : fin_zero_equiv_empty }, ... ≃ fin 0 : fin_zero_equiv_empty },
{ have H : (a + 1) * m = a * m + m, by rewrite [nat.right_distrib, one_mul], { have H : (a + 1) * m = a * m + m, by rewrite [nat.right_distrib, one_mul],
calc fin (a + 1) × fin m calc fin (a + 1) × fin m
≃ (fin a + unit) × fin m : prod.prod_equiv_prod_right !fin_succ_equiv ≃ (fin a + unit) × fin m : prod_equiv_prod_left !fin_succ_equiv
... ≃ (fin a × fin m) + (unit × fin m) : sum_prod_right_distrib ... ≃ (fin a × fin m) + (unit × fin m) : sum_prod_right_distrib
... ≃ (fin a × fin m) + (fin m × unit) : prod_comm_equiv ... ≃ (fin a × fin m) + (fin m × unit) : prod_comm_equiv
... ≃ fin (a * m) + (fin m × unit) : v_0 ... ≃ fin (a * m) + (fin m × unit) : v_0

View file

@ -10,7 +10,7 @@ Some lemmas are commented out, their proofs need to be repaired when needed
import .pointed .nat .pi import .pointed .nat .pi
open eq lift nat is_trunc pi pointed sum function prod option sigma algebra open eq lift nat is_trunc pi pointed sum function prod option sigma algebra prod.ops unit sigma.ops
inductive list (T : Type) : Type := inductive list (T : Type) : Type :=
| nil {} : list T | nil {} : list T
@ -19,11 +19,12 @@ inductive list (T : Type) : Type :=
definition pointed_list [instance] (A : Type) : pointed (list A) := definition pointed_list [instance] (A : Type) : pointed (list A) :=
pointed.mk list.nil pointed.mk list.nil
universe variable u
namespace list namespace list
notation h :: t := cons h t notation h :: t := cons h t
notation `[` l:(foldr `, ` (h t, cons h t) nil `]`) := l notation `[` l:(foldr `, ` (h t, cons h t) nil `]`) := l
universe variable u
variable {T : Type.{u}} variable {T : Type.{u}}
lemma cons_ne_nil (a : T) (l : list T) : a::l ≠ [] := lemma cons_ne_nil (a : T) (l : list T) : a::l ≠ [] :=
@ -744,7 +745,7 @@ attribute list.has_decidable_eq [instance]
namespace list namespace list
variables {A B C : Type} variables {A B C X : Type}
/- map -/ /- map -/
definition map (f : A → B) : list A → list B definition map (f : A → B) : list A → list B
| [] := [] | [] := []
@ -924,4 +925,94 @@ theorem foldr_append (f : A → B → B) : Π (b : B) (l₁ l₂ : list A), fold
| b [] l₂ := rfl | b [] l₂ := rfl
| b (a::l₁) l₂ := by rewrite [append_cons, *foldr_cons, foldr_append] | b (a::l₁) l₂ := by rewrite [append_cons, *foldr_cons, foldr_append]
definition foldl_homotopy {f g : A → B → A} (h : f ~2 g) (a : A) : foldl f a ~ foldl g a :=
begin
intro bs, revert a, induction bs with b bs p: intro a, reflexivity, esimp [foldl],
exact p (f a b) ⬝ ap010 (foldl g) (h a b) bs
end
definition cons_eq_cons {x x' : X} {l l' : list X} (p : x::l = x'::l') : x = x' × l = l' :=
begin
refine lift.down (list.no_confusion p _), intro q r, split, exact q, exact r
end
definition concat_neq_nil (x : X) (l : list X) : concat x l ≠ nil :=
begin
intro p, cases l: cases p,
end
definition concat_eq_singleton {x x' : X} {l : list X} (p : concat x l = [x']) :
x = x' × l = [] :=
begin
cases l with x₂ l,
{ cases cons_eq_cons p with q r, subst q, split: reflexivity },
{ exfalso, esimp [concat] at p, apply concat_neq_nil x l, revert p, generalize (concat x l),
intro l' p, cases cons_eq_cons p with q r, exact r }
end
definition foldr_concat (f : A → B → B) (b : B) (a : A) (l : list A) :
foldr f b (concat a l) = foldr f (f a b) l :=
begin
induction l with a' l p, reflexivity, rewrite [concat_cons, foldr_cons, p]
end
definition iterated_prod (X : Type.{u}) (n : ) : Type.{u} :=
iterate (prod X) n (lift unit)
definition is_trunc_iterated_prod {k : ℕ₋₂} {X : Type} {n : } (H : is_trunc k X) :
is_trunc k (iterated_prod X n) :=
begin
induction n with n IH,
{ apply is_trunc_of_is_contr, apply is_trunc_lift },
{ exact @is_trunc_prod _ _ _ H IH }
end
definition list_of_iterated_prod {n : } (x : iterated_prod X n) : list X :=
begin
induction n with n IH,
{ exact [] },
{ exact x.1::IH x.2 }
end
definition list_of_iterated_prod_succ {n : } (x : X) (xs : iterated_prod X n) :
@list_of_iterated_prod X (succ n) (x, xs) = x::list_of_iterated_prod xs :=
by reflexivity
definition iterated_prod_of_list (l : list X) : Σn, iterated_prod X n :=
begin
induction l with x l IH,
{ exact ⟨0, up ⋆⟩ },
{ exact ⟨succ IH.1, (x, IH.2)⟩ }
end
definition iterated_prod_of_list_cons (x : X) (l : list X) :
iterated_prod_of_list (x::l) =
⟨succ (iterated_prod_of_list l).1, (x, (iterated_prod_of_list l).2)⟩ :=
by reflexivity
protected definition sigma_char [constructor] (X : Type) : list X ≃ Σ(n : ), iterated_prod X n :=
begin
apply equiv.MK iterated_prod_of_list (λv, list_of_iterated_prod v.2),
{ intro x, induction x with n x, esimp, induction n with n IH,
{ induction x with x, induction x, reflexivity },
{ revert x, change Π(x : X × iterated_prod X n), _, intro xs, cases xs with x xs,
rewrite [list_of_iterated_prod_succ, iterated_prod_of_list_cons],
apply sigma_eq (ap succ (IH xs)..1),
apply pathover_ap, refine prod_pathover _ _ _ _ (IH xs)..2,
apply pathover_of_eq, reflexivity }},
{ intro l, induction l with x l IH,
{ reflexivity },
{ exact ap011 cons idp IH }}
end
local attribute [instance] is_trunc_iterated_prod
definition is_trunc_list [instance] {n : ℕ₋₂} {X : Type} (H : is_trunc (n.+2) X) :
is_trunc (n.+2) (list X) :=
begin
assert H : is_trunc (n.+2) (Σ(k : ), iterated_prod X k),
{ apply is_trunc_sigma, refine is_trunc_succ_succ_of_is_set _ _ _,
intro, exact is_trunc_iterated_prod H },
apply is_trunc_equiv_closed_rev _ (list.sigma_char X) _,
end
end list end list

View file

@ -263,6 +263,15 @@ namespace pi
{ intro f, apply eq_of_homotopy, intro b, induction b: reflexivity}, { intro f, apply eq_of_homotopy, intro b, induction b: reflexivity},
end end
definition pi_bool_left_natural {A B : bool → Type} (g : Πx, A x → B x) :
hsquare (pi_bool_left A) (pi_bool_left B) (pi_functor_right g) (prod_functor (g ff) (g tt)) :=
begin intro h, esimp end
definition pi_bool_left_inv_natural {A B : bool → Type} (g : Πx, A x → B x) :
hsquare (pi_bool_left A)⁻¹ᵉ (pi_bool_left B)⁻¹ᵉ
(prod_functor (g ff) (g tt)) (pi_functor_right g) :=
(pi_bool_left_natural g)⁻¹ʰᵗʸʰ
/- Truncatedness: any dependent product of n-types is an n-type -/ /- Truncatedness: any dependent product of n-types is an n-type -/
theorem is_trunc_pi (B : A → Type) (n : trunc_index) theorem is_trunc_pi (B : A → Type) (n : trunc_index)

View file

@ -341,6 +341,10 @@ namespace pointed
/- equalities and equivalences relating pointed homotopies -/ /- equalities and equivalences relating pointed homotopies -/
definition to_homotopy_pt_mk {A B : Type*} {f g : A →* B} (h : f ~ g)
(p : h pt ⬝ respect_pt g = respect_pt f) : to_homotopy_pt (phomotopy.mk h p) = p :=
to_right_inv !eq_con_inv_equiv_con_eq p
definition phomotopy.rec' [recursor] (B : k ~* l → Type) definition phomotopy.rec' [recursor] (B : k ~* l → Type)
(H : Π(h : k ~ l) (p : h pt ⬝ respect_pt l = respect_pt k), B (phomotopy.mk h p)) (H : Π(h : k ~ l) (p : h pt ⬝ respect_pt l = respect_pt k), B (phomotopy.mk h p))
(h : k ~* l) : B h := (h : k ~* l) : B h :=
@ -353,8 +357,8 @@ namespace pointed
definition phomotopy.eta_expand [constructor] (p : k ~* l) : k ~* l := definition phomotopy.eta_expand [constructor] (p : k ~* l) : k ~* l :=
phomotopy.mk p (to_homotopy_pt p) phomotopy.mk p (to_homotopy_pt p)
definition is_trunc_ppi [instance] (n : ℕ₋₂) {A : Type*} (B : A → Type) (b₀ : B pt) [Πa, is_trunc n (B a)] : definition is_trunc_ppi [instance] (n : ℕ₋₂) {A : Type*} (B : A → Type) (b₀ : B pt)
is_trunc n (ppi B b₀) := [Πa, is_trunc n (B a)] : is_trunc n (ppi B b₀) :=
is_trunc_equiv_closed_rev _ !ppi.sigma_char _ is_trunc_equiv_closed_rev _ !ppi.sigma_char _
definition is_trunc_pmap [instance] (n : ℕ₋₂) (A B : Type*) [is_trunc n B] : definition is_trunc_pmap [instance] (n : ℕ₋₂) (A B : Type*) [is_trunc n B] :
@ -1108,6 +1112,9 @@ namespace pointed
definition pointed_eta_pequiv [constructor] (A : Type*) : A ≃* pointed.MK A pt := definition pointed_eta_pequiv [constructor] (A : Type*) : A ≃* pointed.MK A pt :=
pequiv.mk id !is_equiv_id idp pequiv.mk id !is_equiv_id idp
definition pbool_pequiv_add_point_unit [constructor] : pbool ≃* unit₊ :=
pequiv_of_equiv (bool_equiv_option_unit) idp
/- every pointed map is homotopic to one of the form `pmap_of_map _ _`, up to some /- every pointed map is homotopic to one of the form `pmap_of_map _ _`, up to some
pointed equivalences -/ pointed equivalences -/
definition phomotopy_pmap_of_map {A B : Type*} (f : A →* B) : definition phomotopy_pmap_of_map {A B : Type*} (f : A →* B) :

View file

@ -1,7 +1,7 @@
/- /-
Copyright (c) 2017 Floris van Doorn. All rights reserved. Copyright (c) 2017 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE. Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn Authors: Floris van Doorn, Yuri Sulyma
More results about pointed types. More results about pointed types.
@ -15,7 +15,7 @@ Contains
import eq2 .unit import eq2 .unit
open pointed eq unit is_trunc trunc nat is_equiv equiv sigma function bool sigma.ops open pointed eq unit is_trunc trunc nat is_equiv equiv sigma function bool sigma.ops fiber
namespace pointed namespace pointed
variables {A B C : Type*} {P : A → Type} {p₀ : P pt} {k k' l m n : ppi P p₀} variables {A B C : Type*} {P : A → Type} {p₀ : P pt} {k k' l m n : ppi P p₀}
@ -758,6 +758,24 @@ namespace pointed
ap1_gen_const (g b) p := ap1_gen_const (g b) p :=
begin induction p, reflexivity end begin induction p, reflexivity end
definition ap1_phomotopy_symm {A B : Type*} {f g : A →* B} (p : f ~* g) : (Ω⇒ p)⁻¹* = Ω⇒ (p⁻¹*) :=
begin
induction p using phomotopy_rec_idp,
rewrite ap1_phomotopy_refl,
xrewrite [+refl_symm],
rewrite ap1_phomotopy_refl
end
definition ap1_phomotopy_trans {A B : Type*} {f g h : A →* B} (q : g ~* h) (p : f ~* g) :
Ω⇒ (p ⬝* q) = Ω⇒ p ⬝* Ω⇒ q :=
begin
induction p using phomotopy_rec_idp,
induction q using phomotopy_rec_idp,
rewrite trans_refl,
rewrite [+ap1_phomotopy_refl],
rewrite trans_refl
end
definition ap1_pcompose_pconst_left {A B C : Type*} (f : A →* B) : definition ap1_pcompose_pconst_left {A B C : Type*} (f : A →* B) :
phsquare (ap1_pcompose (pconst B C) f) phsquare (ap1_pcompose (pconst B C) f)
(ap1_pconst A C) (ap1_pconst A C)

View file

@ -173,6 +173,8 @@ namespace prod
definition prod_functor [unfold 7] (u : A × B) : A' × B' := definition prod_functor [unfold 7] (u : A × B) : A' × B' :=
(f u.1, g u.2) (f u.1, g u.2)
infix ` ×→ `:63 := prod_functor
definition ap_prod_functor (p : u.1 = v.1) (q : u.2 = v.2) definition ap_prod_functor (p : u.1 = v.1) (q : u.2 = v.2)
: ap (prod_functor f g) (prod_eq p q) = prod_eq (ap f p) (ap g q) := : ap (prod_functor f g) (prod_eq p q) = prod_eq (ap f p) (ap g q) :=
by induction u; induction v; esimp at *; induction p; induction q; reflexivity by induction u; induction v; esimp at *; induction p; induction q; reflexivity
@ -213,12 +215,12 @@ namespace prod
definition prod_equiv_prod [constructor] (f : A ≃ A') (g : B ≃ B') : A × B ≃ A' × B' := definition prod_equiv_prod [constructor] (f : A ≃ A') (g : B ≃ B') : A × B ≃ A' × B' :=
equiv.mk (prod_functor f g) _ equiv.mk (prod_functor f g) _
-- rename infix ` ×≃ `:63 := prod_equiv_prod
definition prod_equiv_prod_left [constructor] (g : B ≃ B') : A × B ≃ A × B' :=
definition prod_equiv_prod_right [constructor] (g : B ≃ B') : A × B ≃ A × B' :=
prod_equiv_prod equiv.rfl g prod_equiv_prod equiv.rfl g
-- rename definition prod_equiv_prod_left [constructor] (f : A ≃ A') : A × B ≃ A' × B :=
definition prod_equiv_prod_right [constructor] (f : A ≃ A') : A × B ≃ A' × B :=
prod_equiv_prod f equiv.rfl prod_equiv_prod f equiv.rfl
/- Symmetry -/ /- Symmetry -/
@ -340,5 +342,7 @@ namespace prod
definition pprod_functor [constructor] {A B C D : Type*} (f : A →* C) (g : B →* D) : A ×* B →* C ×* D := definition pprod_functor [constructor] {A B C D : Type*} (f : A →* C) (g : B →* D) : A ×* B →* C ×* D :=
pmap.mk (prod_functor f g) (prod_eq (respect_pt f) (respect_pt g)) pmap.mk (prod_functor f g) (prod_eq (respect_pt f) (respect_pt g))
definition pprod_incl1 [constructor] (X Y : Type*) : X →* X ×* Y := pmap.mk (λx, (x, pt)) idp
definition pprod_incl2 [constructor] (X Y : Type*) : Y →* X ×* Y := pmap.mk (λy, (pt, y)) idp
end prod end prod

View file

@ -114,6 +114,8 @@ namespace sum
| sum_functor (inl a) := inl (f a) | sum_functor (inl a) := inl (f a)
| sum_functor (inr b) := inr (g b) | sum_functor (inr b) := inr (g b)
infix ` +→ `:62 := sum_functor
/- Equivalences -/ /- Equivalences -/
definition is_equiv_sum_functor [constructor] [instance] [Hf : is_equiv f] [Hg : is_equiv g] definition is_equiv_sum_functor [constructor] [instance] [Hf : is_equiv f] [Hg : is_equiv g]
@ -136,6 +138,8 @@ namespace sum
definition sum_equiv_sum [constructor] (f : A ≃ A') (g : B ≃ B') : A + B ≃ A' + B' := definition sum_equiv_sum [constructor] (f : A ≃ A') (g : B ≃ B') : A + B ≃ A' + B' :=
equiv.mk _ (is_equiv_sum_functor f g) equiv.mk _ (is_equiv_sum_functor f g)
infix ` +≃ `:62 := sum_equiv_sum
definition sum_equiv_sum_left [constructor] (g : B ≃ B') : A + B ≃ A + B' := definition sum_equiv_sum_left [constructor] (g : B ≃ B') : A + B ≃ A + B' :=
sum_equiv_sum equiv.rfl g sum_equiv_sum equiv.rfl g
@ -146,13 +150,11 @@ namespace sum
| flip (inl a) := inr a | flip (inl a) := inr a
| flip (inr b) := inl b | flip (inr b) := inl b
definition flip_flip (x : A ⊎ B) : flip (flip x) = x :=
begin induction x: reflexivity end
definition sum_comm_equiv [constructor] (A B : Type) : A + B ≃ B + A := definition sum_comm_equiv [constructor] (A B : Type) : A + B ≃ B + A :=
begin equiv.MK flip flip flip_flip flip_flip
fapply equiv.MK,
exact flip,
exact flip,
all_goals (intro z; induction z; all_goals reflexivity)
end
definition sum_assoc_equiv [constructor] (A B C : Type) : A + (B + C) ≃ (A + B) + C := definition sum_assoc_equiv [constructor] (A B C : Type) : A + (B + C) ≃ (A + B) + C :=
begin begin
@ -211,7 +213,7 @@ namespace sum
variables (H : unit + A ≃ unit + B) variables (H : unit + A ≃ unit + B)
include H include H
open unit decidable sigma.ops open unit sigma.ops
definition unit_sum_equiv_cancel_map : A → B := definition unit_sum_equiv_cancel_map : A → B :=
begin begin
@ -306,8 +308,7 @@ namespace sum
/- truncatedness -/ /- truncatedness -/
variables (A B) theorem is_trunc_sum (n : ℕ₋₂) (A B : Type) [HA : is_trunc (n.+2) A] [HB : is_trunc (n.+2) B]
theorem is_trunc_sum (n : trunc_index) [HA : is_trunc (n.+2) A] [HB : is_trunc (n.+2) B]
: is_trunc (n.+2) (A + B) := : is_trunc (n.+2) (A + B) :=
begin begin
apply is_trunc_succ_intro, intro z z', apply is_trunc_succ_intro, intro z z',
@ -316,7 +317,7 @@ namespace sum
all_goals exact _, all_goals exact _,
end end
theorem is_trunc_sum_excluded (n : trunc_index) [HA : is_trunc n A] [HB : is_trunc n B] theorem is_trunc_sum_excluded (n : ℕ₋₂) (A B : Type) [HA : is_trunc n A] [HB : is_trunc n B]
(H : A → B → empty) : is_trunc n (A + B) := (H : A → B → empty) : is_trunc n (A + B) :=
begin begin
induction n with n IH, induction n with n IH,
@ -328,8 +329,8 @@ namespace sum
{ apply is_trunc_sum}} { apply is_trunc_sum}}
end end
variable {B} definition is_contr_sum_left (A : Type) {B : Type} [HA : is_contr A] (H : ¬B) :
definition is_contr_sum_left [HA : is_contr A] (H : ¬B) : is_contr (A + B) := is_contr (A + B) :=
is_contr.mk (inl !center) is_contr.mk (inl !center)
(λx, sum.rec_on x (λa, ap inl !center_eq) (λb, empty.elim (H b))) (λx, sum.rec_on x (λa, ap inl !center_eq) (λb, empty.elim (H b)))
@ -353,6 +354,35 @@ namespace sum
begin intro v, induction v with b x, induction b, all_goals reflexivity end begin intro v, induction v with b x, induction b, all_goals reflexivity end
begin intro z, induction z with a b, all_goals reflexivity end begin intro z, induction z with a b, all_goals reflexivity end
variables {A₀₀ A₂₀ A₀₂ A₂₂ B₀₀ B₂₀ B₀₂ B₂₂ C C' : Type}
{f₁₀ : A₀₀ → A₂₀} {f₁₂ : A₀₂ → A₂₂} {f₀₁ : A₀₀ → A₀₂} {f₂₁ : A₂₀ → A₂₂}
{g₁₀ : B₀₀ → B₂₀} {g₁₂ : B₀₂ → B₂₂} {g₀₁ : B₀₀ → B₀₂} {g₂₁ : B₂₀ → B₂₂}
{h₀₁ : B₀₀ → A₀₂} {h₂₁ : B₂₀ → A₂₂}
open function
definition sum_rec_hsquare [unfold 16] (h : hsquare f₁₀ f₁₂ f₀₁ f₂₁)
(k : hsquare g₁₀ f₁₂ h₀₁ h₂₁) : hsquare (f₁₀ +→ g₁₀) f₁₂ (sum.rec f₀₁ h₀₁) (sum.rec f₂₁ h₂₁) :=
begin intro x, induction x with a b, exact h a, exact k b end
definition sum_functor_hsquare [unfold 19] (h : hsquare f₁₀ f₁₂ f₀₁ f₂₁)
(k : hsquare g₁₀ g₁₂ g₀₁ g₂₁) : hsquare (f₁₀ +→ g₁₀) (f₁₂ +→ g₁₂) (f₀₁ +→ g₀₁) (f₂₁ +→ g₂₁) :=
sum_rec_hsquare (λa, ap inl (h a)) (λb, ap inr (k b))
definition sum_functor_compose (g : B → C) (f : A → B) (g' : B' → C') (f' : A' → B') :
(g ∘ f) +→ (g' ∘ f') ~ g +→ g' ∘ f +→ f' :=
begin intro x, induction x with a a': reflexivity end
definition sum_rec_sum_functor (g : B → C) (g' : B' → C) (f : A → B) (f' : A' → B') :
sum.rec g g' ∘ sum_functor f f' ~ sum.rec (g ∘ f) (g' ∘ f') :=
begin intro x, induction x with a a': reflexivity end
definition sum_rec_same_compose (g : B → C) (f : A → B) :
sum.rec (g ∘ f) (g ∘ f) ~ g ∘ sum.rec f f :=
begin intro x, induction x with a a': reflexivity end
definition sum_rec_same (f : A → B) : sum.rec f f ~ f ∘ sum.rec id id :=
by exact sum_rec_same_compose f id
/- pointed sums. We arbitrarily choose (inl pt) as basepoint for the sum -/ /- pointed sums. We arbitrarily choose (inl pt) as basepoint for the sum -/
open pointed open pointed
@ -367,13 +397,15 @@ open sum pi
namespace decidable namespace decidable
/- some properties about the inductive type `decidable`
decidable A is equivalent to A + ¬A -/
definition decidable_equiv [constructor] (A : Type) : decidable A ≃ A + ¬A := definition decidable_equiv [constructor] (A : Type) : decidable A ≃ A + ¬A :=
begin begin
fapply equiv.MK:intro a;induction a:try (constructor;assumption;now), fapply equiv.MK:intro a;induction a:try (constructor;assumption;now),
all_goals reflexivity all_goals reflexivity
end end
definition is_trunc_decidable [constructor] (A : Type) (n : trunc_index) [H : is_trunc n A] : definition is_trunc_decidable [constructor] (A : Type) (n : ℕ₋₂) [H : is_trunc n A] :
is_trunc n (decidable A) := is_trunc n (decidable A) :=
begin begin
apply is_trunc_equiv_closed_rev, apply is_trunc_equiv_closed_rev,
@ -383,11 +415,60 @@ namespace decidable
{ apply is_trunc_sum_excluded, exact λa na, na a} { apply is_trunc_sum_excluded, exact λa na, na a}
end end
definition double_neg_elim {A : Type} (H : decidable A) (p : ¬ ¬ A) : A :=
begin induction H, assumption, contradiction end
definition dite_true {C : Type} [H : decidable C] {A : Type}
{t : C → A} {e : ¬ C → A} (c : C) (H' : is_prop C) : dite C t e = t c :=
begin
induction H with H H,
exact ap t !is_prop.elim,
contradiction
end
definition dite_false {C : Type} [H : decidable C] {A : Type}
{t : C → A} {e : ¬ C → A} (c : ¬ C) : dite C t e = e c :=
begin
induction H with H H,
contradiction,
exact ap e !is_prop.elim,
end
definition decidable_eq_of_is_prop (A : Type) [is_prop A] : decidable_eq A :=
λa a', decidable.inl !is_prop.elim
definition decidable_eq_sigma [instance] {A : Type} (B : A → Type) [HA : decidable_eq A]
[HB : Πa, decidable_eq (B a)] : decidable_eq (Σa, B a) :=
begin
intro v v', induction v with a b, induction v' with a' b',
cases HA a a' with p np,
{ induction p, cases HB a b b' with q nq,
induction q, exact decidable.inl idp,
apply decidable.inr, intro p, apply nq, apply @eq_of_pathover_idp A B,
exact change_path !is_prop.elim p..2 },
{ apply decidable.inr, intro p, apply np, exact p..1 }
end
open sum
definition decidable_eq_sum [instance] (A B : Type) [HA : decidable_eq A] [HB : decidable_eq B] :
decidable_eq (A ⊎ B) :=
begin
intro v v', induction v with a b: induction v' with a' b',
{ cases HA a a' with p np,
{ exact decidable.inl (ap sum.inl p) },
{ apply decidable.inr, intro p, apply np, exact down (sum.encode p) }},
{ apply decidable.inr, intro p, cases p },
{ apply decidable.inr, intro p, cases p },
{ cases HB b b' with p np,
{ exact decidable.inl (ap sum.inr p) },
{ apply decidable.inr, intro p, apply np, exact down (sum.encode p) }},
end
end decidable end decidable
attribute sum.is_trunc_sum [instance] [priority 1480] attribute sum.is_trunc_sum [instance] [priority 1480]
definition tsum [constructor] {n : trunc_index} (A B : (n.+2)-Type) : (n.+2)-Type := definition tsum [constructor] {n : ℕ₋₂} (A B : (n.+2)-Type) : (n.+2)-Type :=
trunctype.mk (A + B) _ trunctype.mk (A + B) _
infixr `+t`:25 := tsum infixr `+t`:25 := tsum

View file

@ -1087,6 +1087,7 @@ end eq
/- some consequences for properties about functions (surjectivity etc.) -/ /- some consequences for properties about functions (surjectivity etc.) -/
namespace function namespace function
open fiber
variables {A B : Type} variables {A B : Type}
definition is_surjective_of_is_equiv [instance] (f : A → B) [H : is_equiv f] : is_surjective f := definition is_surjective_of_is_equiv [instance] (f : A → B) [H : is_equiv f] : is_surjective f :=
λb, begin esimp, apply center, apply is_trunc_trunc_of_is_trunc end λb, begin esimp, apply center, apply is_trunc_trunc_of_is_trunc end