feat(library/data/set/basic.lean): add definitions and simplify proofs
This commit is contained in:
parent
e76e445ece
commit
c563548980
1 changed files with 50 additions and 34 deletions
|
@ -14,6 +14,8 @@ namespace set
|
|||
|
||||
variable {T : Type}
|
||||
|
||||
/- membership and subset -/
|
||||
|
||||
definition mem [reducible] (x : T) (a : set T) := a x
|
||||
notation e ∈ a := mem e a
|
||||
|
||||
|
@ -23,10 +25,17 @@ funext (take x, propext (H x))
|
|||
definition subset (a b : set T) := ∀ x, x ∈ a → x ∈ b
|
||||
infix `⊆`:50 := subset
|
||||
|
||||
definition eq_of_subset_of_subset (a b : set T) (H₁ : a ⊆ b) (H₂ : b ⊆ a) : a = b :=
|
||||
setext (take x, iff.intro (H₁ x) (H₂ x))
|
||||
/- bounded quantification -/
|
||||
|
||||
/- empty -/
|
||||
abbreviation bounded_forall (a : set T) (P : T → Prop) := ∀x, x ∈ a → P x
|
||||
notation `forallb` binders `∈` a `,` r:(scoped:1 P, P) := bounded_forall a r
|
||||
notation `∀₀` binders `∈` a `,` r:(scoped:1 P, P) := bounded_forall a r
|
||||
|
||||
abbreviation bounded_exists (a : set T) (P : T → Prop) := ∃x, x ∈ a ∧ P x
|
||||
notation `existsb` binders `∈` a `,` r:(scoped:1 P, P) := bounded_exists a r
|
||||
notation `∃₀` binders `∈` a `,` r:(scoped:1 P, P) := bounded_exists a r
|
||||
|
||||
/- empty set -/
|
||||
|
||||
definition empty [reducible] : set T := λx, false
|
||||
notation `∅` := empty
|
||||
|
@ -34,13 +43,13 @@ notation `∅` := empty
|
|||
theorem mem_empty (x : T) : ¬ (x ∈ ∅) :=
|
||||
assume H : x ∈ ∅, H
|
||||
|
||||
/- univ -/
|
||||
/- universal set -/
|
||||
|
||||
definition univ : set T := λx, true
|
||||
|
||||
theorem mem_univ (x : T) : x ∈ univ := trivial
|
||||
|
||||
/- inter -/
|
||||
/- intersection -/
|
||||
|
||||
definition inter [reducible] (a b : set T) : set T := λx, x ∈ a ∧ x ∈ b
|
||||
notation a ∩ b := inter a b
|
||||
|
@ -48,19 +57,13 @@ notation a ∩ b := inter a b
|
|||
theorem mem_inter (x : T) (a b : set T) : x ∈ a ∩ b ↔ (x ∈ a ∧ x ∈ b) := !iff.refl
|
||||
|
||||
theorem inter_self (a : set T) : a ∩ a = a :=
|
||||
setext (take x, iff.intro
|
||||
(assume H, and.elim_left H)
|
||||
(assume H, and.intro H H))
|
||||
setext (take x, !and_self)
|
||||
|
||||
theorem inter_empty (a : set T) : a ∩ ∅ = ∅ :=
|
||||
setext (take x, iff.intro
|
||||
(assume H, and.elim_right H)
|
||||
(assume H, false.elim H))
|
||||
setext (take x, !and_false)
|
||||
|
||||
theorem empty_inter (a : set T) : ∅ ∩ a = ∅ :=
|
||||
setext (take x, iff.intro
|
||||
(assume H, and.elim_left H)
|
||||
(assume H, false.elim H))
|
||||
setext (take x, !false_and)
|
||||
|
||||
theorem inter.comm (a b : set T) : a ∩ b = b ∩ a :=
|
||||
setext (take x, !and.comm)
|
||||
|
@ -76,29 +79,13 @@ notation a ∪ b := union a b
|
|||
theorem mem_union (x : T) (a b : set T) : x ∈ a ∪ b ↔ (x ∈ a ∨ x ∈ b) := !iff.refl
|
||||
|
||||
theorem union_self (a : set T) : a ∪ a = a :=
|
||||
setext (take x, iff.intro
|
||||
(assume H,
|
||||
match H with
|
||||
| or.inl H₁ := H₁
|
||||
| or.inr H₂ := H₂
|
||||
end)
|
||||
(assume H, or.inl H))
|
||||
setext (take x, !or_self)
|
||||
|
||||
theorem union_empty (a : set T) : a ∪ ∅ = a :=
|
||||
setext (take x, iff.intro
|
||||
(assume H, match H with
|
||||
| or.inl H₁ := H₁
|
||||
| or.inr H₂ := false.elim H₂
|
||||
end)
|
||||
(assume H, or.inl H))
|
||||
setext (take x, !or_false)
|
||||
|
||||
theorem union_empty_left (a : set T) : ∅ ∪ a = a :=
|
||||
setext (take x, iff.intro
|
||||
(assume H, match H with
|
||||
| or.inl H₁ := false.elim H₁
|
||||
| or.inr H₂ := H₂
|
||||
end)
|
||||
(assume H, or.inr H))
|
||||
theorem empty_union (a : set T) : ∅ ∪ a = a :=
|
||||
setext (take x, !false_or)
|
||||
|
||||
theorem union.comm (a b : set T) : a ∪ b = b ∪ a :=
|
||||
setext (take x, or.comm)
|
||||
|
@ -106,4 +93,33 @@ setext (take x, or.comm)
|
|||
theorem union_assoc (a b c : set T) : (a ∪ b) ∪ c = a ∪ (b ∪ c) :=
|
||||
setext (take x, or.assoc)
|
||||
|
||||
/- set-builder notation -/
|
||||
|
||||
-- {x : T | P}
|
||||
definition set_of (P : T → Prop) : set T := P
|
||||
notation `{` binders `|` r:(scoped:1 P, set_of P) `}` := r
|
||||
|
||||
-- {[x, y, z]} or ⦃x, y, z⦄
|
||||
definition insert (x : T) (a : set T) : set T := {y : T | y = x ∨ y ∈ a}
|
||||
notation `{[`:max a:(foldr `,` (x b, insert x b) ∅) `]}`:0 := a
|
||||
notation `⦃` a:(foldr `,` (x b, insert x b) ∅) `⦄` := a
|
||||
|
||||
/- large unions -/
|
||||
|
||||
section
|
||||
variables {I : Type}
|
||||
variable a : set I
|
||||
variable b : I → set T
|
||||
variable C : set (set T)
|
||||
|
||||
definition Inter : set T := {x : T | ∀i, x ∈ b i}
|
||||
definition bInter : set T := {x : T | ∀₀ i ∈ a, x ∈ b i}
|
||||
definition sInter : set T := {x : T | ∀₀ c ∈ C, x ∈ c}
|
||||
definition Union : set T := {x : T | ∃i, x ∈ b i}
|
||||
definition bUnion : set T := {x : T | ∃₀ i ∈ a, x ∈ b i}
|
||||
definition sUnion : set T := {x : T | ∃₀ c ∈ C, x ∈ c}
|
||||
|
||||
-- TODO: need notation for these
|
||||
end
|
||||
|
||||
end set
|
||||
|
|
Loading…
Reference in a new issue