refactor(builtin/Nat): rename destruct to discriminate
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
abb9b8af83
commit
c5d13abd6f
1 changed files with 10 additions and 9 deletions
|
@ -53,7 +53,7 @@ theorem pred::nz' (a : Nat) : a ≠ 0 ⇒ ∃ b, b + 1 = a
|
||||||
theorem pred::nz {a : Nat} (H : a ≠ 0) : ∃ b, b + 1 = a
|
theorem pred::nz {a : Nat} (H : a ≠ 0) : ∃ b, b + 1 = a
|
||||||
:= (pred::nz' a) ◂ H
|
:= (pred::nz' a) ◂ H
|
||||||
|
|
||||||
theorem destruct {B : Bool} {a : Nat} (H1: a = 0 → B) (H2 : Π n, a = n + 1 → B) : B
|
theorem discriminate {B : Bool} {a : Nat} (H1: a = 0 → B) (H2 : Π n, a = n + 1 → B) : B
|
||||||
:= or::elim (em (a = 0))
|
:= or::elim (em (a = 0))
|
||||||
(λ Heq0 : a = 0, H1 Heq0)
|
(λ Heq0 : a = 0, H1 Heq0)
|
||||||
(λ Hne0 : a ≠ 0, obtain (w : Nat) (Hw : w + 1 = a), from (pred::nz Hne0),
|
(λ Hne0 : a ≠ 0, obtain (w : Nat) (Hw : w + 1 = a), from (pred::nz Hne0),
|
||||||
|
@ -197,14 +197,15 @@ theorem add::inj {a b c : Nat} (H : a + b = a + c) : b = c
|
||||||
:= (add::inj' a b c) ◂ H
|
:= (add::inj' a b c) ◂ H
|
||||||
|
|
||||||
theorem add::eqz {a b : Nat} (H : a + b = 0) : a = 0
|
theorem add::eqz {a b : Nat} (H : a + b = 0) : a = 0
|
||||||
:= destruct (λ H1 : a = 0, H1)
|
:= discriminate
|
||||||
(λ (n : Nat) (H1 : a = n + 1),
|
(λ H1 : a = 0, H1)
|
||||||
absurd::elim (a = 0)
|
(λ (n : Nat) (H1 : a = n + 1),
|
||||||
H (calc a + b = n + 1 + b : { H1 }
|
absurd::elim (a = 0)
|
||||||
... = n + (1 + b) : symm (add::assoc n 1 b)
|
H (calc a + b = n + 1 + b : { H1 }
|
||||||
... = n + (b + 1) : { add::comm 1 b }
|
... = n + (1 + b) : symm (add::assoc n 1 b)
|
||||||
... = n + b + 1 : add::assoc n b 1
|
... = n + (b + 1) : { add::comm 1 b }
|
||||||
... ≠ 0 : succ::nz (n + b)))
|
... = n + b + 1 : add::assoc n b 1
|
||||||
|
... ≠ 0 : succ::nz (n + b)))
|
||||||
|
|
||||||
theorem le::intro {a b c : Nat} (H : a + c = b) : a ≤ b
|
theorem le::intro {a b c : Nat} (H : a + c = b) : a ≤ b
|
||||||
:= (symm (le::def a b)) ◂ (have (∃ x, a + x = b) : exists::intro c H)
|
:= (symm (le::def a b)) ◂ (have (∃ x, a + x = b) : exists::intro c H)
|
||||||
|
|
Loading…
Reference in a new issue