move definitions from spectral repository here
This commit is contained in:
parent
227fcad22a
commit
c5d31f76d7
26 changed files with 990 additions and 268 deletions
|
@ -157,7 +157,7 @@ namespace rezk
|
|||
--induction b using rezk.rec with b' b' b g, --why does this not work if it works below?
|
||||
refine @rezk.rec _ _ _ (rezk_hom_left_pth_1_trunc a a' f) _ _ _ b,
|
||||
intro b, apply equiv_precompose (to_hom f⁻¹ⁱ), --how do i unfold properly at this point?
|
||||
{ intro b b' g, apply equiv_pathover, intro g' g'' H,
|
||||
{ intro b b' g, apply equiv_pathover2, intro g' g'' H,
|
||||
refine !pathover_rezk_hom_left_pt ⬝op _,
|
||||
refine !assoc ⬝ ap (λ x, x ∘ _) _, refine eq_of_parallel_po_right _ H,
|
||||
apply pathover_rezk_hom_left_pt },
|
||||
|
|
|
@ -6,7 +6,7 @@ Authors: Floris van Doorn
|
|||
Basic group theory
|
||||
-/
|
||||
|
||||
import algebra.category.category algebra.bundled .homomorphism
|
||||
import algebra.category.category algebra.bundled .homomorphism types.pointed2
|
||||
|
||||
open eq algebra pointed function is_trunc pi equiv is_equiv
|
||||
set_option class.force_new true
|
||||
|
@ -590,5 +590,14 @@ namespace group
|
|||
definition trivial_group_of_is_contr' (G : Group) [H : is_contr G] : G = G0 :=
|
||||
eq_of_isomorphism (trivial_group_of_is_contr G)
|
||||
|
||||
definition pequiv_of_isomorphism_of_eq {G₁ G₂ : Group} (p : G₁ = G₂) :
|
||||
pequiv_of_isomorphism (isomorphism_of_eq p) = pequiv_of_eq (ap pType_of_Group p) :=
|
||||
begin
|
||||
induction p,
|
||||
apply pequiv_eq,
|
||||
fapply phomotopy.mk,
|
||||
{ intro g, reflexivity },
|
||||
{ apply is_prop.elim }
|
||||
end
|
||||
|
||||
end group
|
||||
|
|
|
@ -11,7 +11,6 @@ import .trunc_group types.trunc .group_theory types.nat.hott
|
|||
open nat eq pointed trunc is_trunc algebra group function equiv unit is_equiv nat
|
||||
|
||||
-- TODO: consistently make n an argument before A
|
||||
-- TODO: rename cghomotopy_group to aghomotopy_group
|
||||
-- TODO: rename homotopy_group_functor_compose to homotopy_group_functor_pcompose
|
||||
namespace eq
|
||||
|
||||
|
@ -60,14 +59,14 @@ namespace eq
|
|||
definition ghomotopy_group [constructor] (n : ℕ) [is_succ n] (A : Type*) : Group :=
|
||||
Group.mk (π[n] A) _
|
||||
|
||||
definition cghomotopy_group [constructor] (n : ℕ) [is_at_least_two n] (A : Type*) : AbGroup :=
|
||||
definition aghomotopy_group [constructor] (n : ℕ) [is_at_least_two n] (A : Type*) : AbGroup :=
|
||||
AbGroup.mk (π[n] A) _
|
||||
|
||||
definition fundamental_group [constructor] (A : Type*) : Group :=
|
||||
ghomotopy_group 1 A
|
||||
|
||||
notation `πg[`:95 n:0 `]`:0 := ghomotopy_group n
|
||||
notation `πag[`:95 n:0 `]`:0 := cghomotopy_group n
|
||||
notation `πag[`:95 n:0 `]`:0 := aghomotopy_group n
|
||||
|
||||
notation `π₁` := fundamental_group -- should this be notation for the group or pointed type?
|
||||
|
||||
|
@ -163,7 +162,7 @@ namespace eq
|
|||
[is_equiv f] : is_equiv (π→[n] f) :=
|
||||
@(is_equiv_trunc_functor 0 _) !is_equiv_apn
|
||||
|
||||
definition homotopy_group_functor_succ_phomotopy_in (n : ℕ) {A B : Type*} (f : A →* B) :
|
||||
definition homotopy_group_succ_in_natural (n : ℕ) {A B : Type*} (f : A →* B) :
|
||||
homotopy_group_succ_in B n ∘* π→[n + 1] f ~*
|
||||
π→[n] (Ω→ f) ∘* homotopy_group_succ_in A n :=
|
||||
begin
|
||||
|
@ -171,11 +170,15 @@ namespace eq
|
|||
exact ptrunc_functor_phomotopy 0 (apn_succ_phomotopy_in n f)
|
||||
end
|
||||
|
||||
definition homotopy_group_succ_in_natural_unpointed (n : ℕ) {A B : Type*} (f : A →* B) :
|
||||
hsquare (homotopy_group_succ_in A n) (homotopy_group_succ_in B n) (π→[n+1] f) (π→[n] (Ω→ f)) :=
|
||||
(homotopy_group_succ_in_natural n f)⁻¹*
|
||||
|
||||
definition is_equiv_homotopy_group_functor_ap1 (n : ℕ) {A B : Type*} (f : A →* B)
|
||||
[is_equiv (π→[n + 1] f)] : is_equiv (π→[n] (Ω→ f)) :=
|
||||
have is_equiv (π→[n] (Ω→ f) ∘ homotopy_group_succ_in A n),
|
||||
from is_equiv_of_equiv_of_homotopy (equiv.mk (π→[n+1] f) _ ⬝e homotopy_group_succ_in B n)
|
||||
(homotopy_group_functor_succ_phomotopy_in n f),
|
||||
(homotopy_group_succ_in_natural n f),
|
||||
is_equiv.cancel_right (homotopy_group_succ_in A n) _
|
||||
|
||||
definition tinverse [constructor] {X : Type*} : π[1] X →* π[1] X :=
|
||||
|
@ -275,10 +278,39 @@ namespace eq
|
|||
apply homotopy_group_pequiv_loop_ptrunc_con}
|
||||
end
|
||||
|
||||
lemma ghomotopy_group_isomorphism_of_ptrunc_pequiv {A B : Type*}
|
||||
(n k : ℕ) (H : n+1 ≤[ℕ] k) (f : ptrunc k A ≃* ptrunc k B) : πg[n+1] A ≃g πg[n+1] B :=
|
||||
(ghomotopy_group_ptrunc_of_le H A)⁻¹ᵍ ⬝g
|
||||
homotopy_group_isomorphism_of_pequiv n f ⬝g
|
||||
ghomotopy_group_ptrunc_of_le H B
|
||||
|
||||
definition fundamental_group_isomorphism {X : Type*} {G : Group}
|
||||
(e : Ω X ≃ G) (hom_e : Πp q, e (p ⬝ q) = e p * e q) : π₁ X ≃g G :=
|
||||
isomorphism_of_equiv (trunc_equiv_trunc 0 e ⬝e (trunc_equiv 0 G))
|
||||
begin intro p q, induction p with p, induction q with q, exact hom_e p q end
|
||||
|
||||
definition ghomotopy_group_ptrunc [constructor] (k : ℕ) [is_succ k] (A : Type*) :
|
||||
πg[k] (ptrunc k A) ≃g πg[k] A :=
|
||||
ghomotopy_group_ptrunc_of_le (le.refl k) A
|
||||
|
||||
section psquare
|
||||
variables {A₀₀ A₂₀ A₀₂ A₂₂ : Type*}
|
||||
{f₁₀ : A₀₀ →* A₂₀} {f₁₂ : A₀₂ →* A₂₂}
|
||||
{f₀₁ : A₀₀ →* A₀₂} {f₂₁ : A₂₀ →* A₂₂}
|
||||
|
||||
definition homotopy_group_functor_psquare (n : ℕ) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
psquare (π→[n] f₁₀) (π→[n] f₁₂) (π→[n] f₀₁) (π→[n] f₂₁) :=
|
||||
!homotopy_group_functor_compose⁻¹* ⬝* homotopy_group_functor_phomotopy n p ⬝*
|
||||
!homotopy_group_functor_compose
|
||||
|
||||
definition homotopy_group_homomorphism_psquare (n : ℕ) [H : is_succ n]
|
||||
(p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : hsquare (π→g[n] f₁₀) (π→g[n] f₁₂) (π→g[n] f₀₁) (π→g[n] f₂₁) :=
|
||||
begin
|
||||
induction H with n, exact to_homotopy (ptrunc_functor_psquare 0 (apn_psquare (succ n) p))
|
||||
end
|
||||
|
||||
end psquare
|
||||
|
||||
/- some homomorphisms -/
|
||||
|
||||
-- definition is_homomorphism_cast_loopn_succ_eq_in {A : Type*} (n : ℕ) :
|
||||
|
|
|
@ -582,6 +582,10 @@ section add_ab_inf_group
|
|||
|
||||
theorem neg_neg_sub_neg (a b : A) : - (-a - -b) = a - b :=
|
||||
by rewrite [neg_sub, sub_neg_eq_add, neg_add_eq_sub]
|
||||
|
||||
definition add_sub_cancel_middle (a b : A) : a + (b - a) = b :=
|
||||
!add.comm ⬝ !sub_add_cancel
|
||||
|
||||
end add_ab_inf_group
|
||||
|
||||
definition inf_group_of_add_inf_group (A : Type) [G : add_inf_group A] : inf_group A :=
|
||||
|
|
|
@ -51,6 +51,22 @@ namespace eq
|
|||
infix ` ~2 `:50 := homotopy2
|
||||
infix ` ~3 `:50 := homotopy3
|
||||
|
||||
definition homotopy2.refl {A} {B : A → Type} {C : Π⦃a⦄, B a → Type} (f : Πa (b : B a), C b) :
|
||||
f ~2 f :=
|
||||
λa b, idp
|
||||
|
||||
definition homotopy2.rfl [refl] {A} {B : A → Type} {C : Π⦃a⦄, B a → Type}
|
||||
{f : Πa (b : B a), C b} : f ~2 f :=
|
||||
λa b, idp
|
||||
|
||||
definition homotopy3.refl {A} {B : A → Type} {C : Πa, B a → Type}
|
||||
{D : Π⦃a⦄ ⦃b : B a⦄, C a b → Type} (f : Πa b (c : C a b), D c) : f ~3 f :=
|
||||
λa b c, idp
|
||||
|
||||
definition homotopy3.rfl {A} {B : A → Type} {C : Πa, B a → Type}
|
||||
{D : Π⦃a⦄ ⦃b : B a⦄, C a b → Type} {f : Πa b (c : C a b), D c} : f ~3 f :=
|
||||
λa b c, idp
|
||||
|
||||
definition ap0111 (f : U → V → W → X) (Hu : u = u') (Hv : v = v') (Hw : w = w')
|
||||
: f u v w = f u' v' w' :=
|
||||
by cases Hu; congruence; repeat assumption
|
||||
|
@ -70,13 +86,13 @@ namespace eq
|
|||
: f u v w x y z = f u' v' w' x' y' z' :=
|
||||
by cases Hu; congruence; repeat assumption
|
||||
|
||||
definition ap010 (f : X → Πa, B a) (Hx : x = x') : f x ~ f x' :=
|
||||
definition ap010 [unfold 7] (f : X → Πa, B a) (Hx : x = x') : f x ~ f x' :=
|
||||
by intros; cases Hx; reflexivity
|
||||
|
||||
definition ap0100 (f : X → Πa b, C a b) (Hx : x = x') : f x ~2 f x' :=
|
||||
definition ap0100 [unfold 8] (f : X → Πa b, C a b) (Hx : x = x') : f x ~2 f x' :=
|
||||
by intros; cases Hx; reflexivity
|
||||
|
||||
definition ap01000 (f : X → Πa b c, D a b c) (Hx : x = x') : f x ~3 f x' :=
|
||||
definition ap01000 [unfold 9] (f : X → Πa b c, D a b c) (Hx : x = x') : f x ~3 f x' :=
|
||||
by intros; cases Hx; reflexivity
|
||||
|
||||
definition apdt011 (f : Πa, B a → Z) (Ha : a = a') (Hb : transport B Ha b = b')
|
||||
|
@ -189,6 +205,13 @@ namespace eq
|
|||
: eq_of_homotopy3 (λa b c, H1 a b c ⬝ H2 a b c) = eq_of_homotopy3 H1 ⬝ eq_of_homotopy3 H2 :=
|
||||
ap eq_of_homotopy (eq_of_homotopy (λa, !eq_of_homotopy2_con)) ⬝ !eq_of_homotopy_con
|
||||
|
||||
definition ap_apd0111 {A₁ A₂ A₃ : Type} {B : A₁ → Type} {C : Π⦃a⦄, B a → Type} {a a₂ : A₁}
|
||||
{b : B a} {b₂ : B a₂} {c : C b} {c₂ : C b₂}
|
||||
(g : A₂ → A₃) (f : Πa b, C b → A₂) (Ha : a = a₂) (Hb : b =[Ha] b₂)
|
||||
(Hc : c =[apd011 C Ha Hb] c₂) :
|
||||
ap g (apd0111 f Ha Hb Hc) = apd0111 (λa b c, (g (f a b c))) Ha Hb Hc :=
|
||||
by induction Hb; induction Hc using idp_rec_on; reflexivity
|
||||
|
||||
end eq
|
||||
|
||||
open eq equiv is_equiv
|
||||
|
|
|
@ -30,7 +30,7 @@ namespace eq
|
|||
= change_path (ap_compose g f p) (pathover_ap B (g ∘ f) q) :=
|
||||
by induction q; reflexivity
|
||||
|
||||
definition pathover_of_tr_eq_idp (r : b = b') : pathover_of_tr_eq r = pathover_idp_of_eq r :=
|
||||
definition pathover_idp_of_eq_def (r : b = b') : pathover_of_tr_eq r = pathover_idp_of_eq r :=
|
||||
idp
|
||||
|
||||
definition pathover_of_tr_eq_eq_concato (r : p ▸ b = b₂)
|
||||
|
@ -134,4 +134,36 @@ namespace eq
|
|||
tr_eq_of_pathover (q ⬝op r) = tr_eq_of_pathover q ⬝ r :=
|
||||
by induction r; reflexivity
|
||||
|
||||
definition pathover_tr_pathover_idp_of_eq {A : Type} {B : A → Type} {a a' : A} {b : B a} {b' : B a'} {p : a = a'}
|
||||
(q : b =[p] b') :
|
||||
pathover_tr p b ⬝o pathover_idp_of_eq (tr_eq_of_pathover q) = q :=
|
||||
begin induction q; reflexivity end
|
||||
|
||||
definition pathover_of_tr_eq_idp' {A : Type} {B : A → Type} {a a₂ : A} (p : a = a₂) (b : B a) :
|
||||
pathover_of_tr_eq idp = pathover_tr p b :=
|
||||
by induction p; constructor
|
||||
|
||||
definition eq_of_pathover_apo {A C : Type} {B : A → Type} {a a' : A} {b : B a} {b' : B a'}
|
||||
{p : a = a'} (g : Πa, B a → C) (q : b =[p] b') :
|
||||
eq_of_pathover (apo g q) = apd011 g p q :=
|
||||
by induction q; reflexivity
|
||||
|
||||
definition pathover_ap_cono {A A' : Type} {a₁ a₂ a₃ : A}
|
||||
{p₁ : a₁ = a₂} {p₂ : a₂ = a₃} (B' : A' → Type) (f : A → A')
|
||||
{b₁ : B' (f a₁)} {b₂ : B' (f a₂)} {b₃ : B' (f a₃)}
|
||||
(q₁ : b₁ =[p₁] b₂) (q₂ : b₂ =[p₂] b₃) :
|
||||
pathover_ap B' f (q₁ ⬝o q₂) =
|
||||
change_path !ap_con⁻¹ (pathover_ap B' f q₁ ⬝o pathover_ap B' f q₂) :=
|
||||
by induction q₁; induction q₂; reflexivity
|
||||
|
||||
definition concato_eq_eq {A : Type} {B : A → Type} {a₁ a₂ : A} {p₁ : a₁ = a₂}
|
||||
{b₁ : B a₁} {b₂ b₂' : B a₂} (r : b₁ =[p₁] b₂) (q : b₂ = b₂') :
|
||||
r ⬝op q = r ⬝o pathover_idp_of_eq q :=
|
||||
by induction q; reflexivity
|
||||
|
||||
definition eq_tr_of_pathover_con_tr_eq_of_pathover {A : Type} {B : A → Type}
|
||||
{a₁ a₂ : A} (p : a₁ = a₂) {b₁ : B a₁} {b₂ : B a₂} (q : b₁ =[p] b₂) :
|
||||
eq_tr_of_pathover q ⬝ tr_eq_of_pathover q⁻¹ᵒ = idp :=
|
||||
by induction q; reflexivity
|
||||
|
||||
end eq
|
||||
|
|
|
@ -722,4 +722,14 @@ namespace eq
|
|||
(r : p₂₁' = p₂₁) : aps f (q ⬝ph s₁₁ ⬝hp r⁻¹) = ap02 f q ⬝ph aps f s₁₁ ⬝hp (ap02 f r)⁻¹ :=
|
||||
by induction q; induction r; reflexivity
|
||||
|
||||
definition eq_hconcat_equiv [constructor] {p : a₀₀ = a₀₂} (r : p = p₀₁) :
|
||||
square p₁₀ p₁₂ p p₂₁ ≃ square p₁₀ p₁₂ p₀₁ p₂₁ :=
|
||||
equiv.MK (eq_hconcat r⁻¹) (eq_hconcat r)
|
||||
begin intro s, induction r, reflexivity end begin intro s, induction r, reflexivity end
|
||||
|
||||
definition hconcat_eq_equiv [constructor] {p : a₂₀ = a₂₂} (r : p₂₁ = p) :
|
||||
square p₁₀ p₁₂ p₀₁ p₂₁ ≃ square p₁₀ p₁₂ p₀₁ p :=
|
||||
equiv.MK (λs, hconcat_eq s r) (λs, hconcat_eq s r⁻¹)
|
||||
begin intro s, induction r, reflexivity end begin intro s, induction r, reflexivity end
|
||||
|
||||
end eq
|
||||
|
|
|
@ -35,6 +35,7 @@ namespace eq
|
|||
{s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁} {s₃₁ : square p₃₀ p₃₂ p₂₁ p₄₁}
|
||||
{s₁₃ : square p₁₂ p₁₄ p₀₃ p₂₃} {s₃₃ : square p₃₂ p₃₄ p₂₃ p₄₃}
|
||||
|
||||
{b : B a}
|
||||
{b₀₀ : B a₀₀} {b₂₀ : B a₂₀} {b₄₀ : B a₄₀}
|
||||
{b₀₂ : B a₀₂} {b₂₂ : B a₂₂} {b₄₂ : B a₄₂}
|
||||
{b₀₄ : B a₀₄} {b₂₄ : B a₂₄} {b₄₄ : B a₄₄}
|
||||
|
@ -117,9 +118,9 @@ namespace eq
|
|||
squareover B (sp ⬝ph s₁₁) q₁₀ q₁₂ q q₂₁ :=
|
||||
by induction sp; induction r; exact t₁₁
|
||||
|
||||
definition hconcato_pathover {p : a₂₀ = a₂₂} {sp : p₂₁ = p} {q : b₂₀ =[p] b₂₂}
|
||||
(t₁₁ : squareover B s₁₁ q₁₀ q₁₂ q₀₁ q₂₁) (r : change_path sp q₂₁ = q) :
|
||||
squareover B (s₁₁ ⬝hp sp) q₁₀ q₁₂ q₀₁ q :=
|
||||
definition hconcato_pathover {p : a₂₀ = a₂₂} {sp : p = p₂₁} {s : square p₁₀ p₁₂ p₀₁ p}
|
||||
{q : b₂₀ =[p] b₂₂} (t₁₁ : squareover B (s ⬝hp sp) q₁₀ q₁₂ q₀₁ q₂₁)
|
||||
(r : change_path sp q = q₂₁) : squareover B s q₁₀ q₁₂ q₀₁ q :=
|
||||
by induction sp; induction r; exact t₁₁
|
||||
|
||||
infix ` ⬝ho `:69 := hconcato --type using \tr
|
||||
|
@ -304,4 +305,37 @@ namespace eq
|
|||
exact square_dpair_eq_dpair s₁₁ t₁₁
|
||||
end
|
||||
|
||||
definition move_right_of_top_over {p : a₀₀ = a} {p' : a = a₂₀}
|
||||
{s : square p p₁₂ p₀₁ (p' ⬝ p₂₁)} {q : b₀₀ =[p] b} {q' : b =[p'] b₂₀}
|
||||
(t : squareover B (move_top_of_right s) (q ⬝o q') q₁₂ q₀₁ q₂₁) :
|
||||
squareover B s q q₁₂ q₀₁ (q' ⬝o q₂₁) :=
|
||||
begin induction q', induction q, induction q₂₁, exact t end
|
||||
|
||||
/- TODO: replace the version in the library by this -/
|
||||
|
||||
variables (s₁₁ q₀₁ q₁₀ q₂₁ q₁₂)
|
||||
definition squareover_fill_t : Σ (q : b₀₀ =[p₁₀] b₂₀), squareover B s₁₁ q q₁₂ q₀₁ q₂₁ :=
|
||||
begin
|
||||
induction s₁₁, induction q₀₁ using idp_rec_on, induction q₂₁ using idp_rec_on,
|
||||
induction q₁₂ using idp_rec_on, exact ⟨idpo, idso⟩
|
||||
end
|
||||
|
||||
definition squareover_fill_b : Σ (q : b₀₂ =[p₁₂] b₂₂), squareover B s₁₁ q₁₀ q q₀₁ q₂₁ :=
|
||||
begin
|
||||
induction s₁₁, induction q₀₁ using idp_rec_on, induction q₂₁ using idp_rec_on,
|
||||
induction q₁₀ using idp_rec_on, exact ⟨idpo, idso⟩
|
||||
end
|
||||
|
||||
definition squareover_fill_l : Σ (q : b₀₀ =[p₀₁] b₀₂), squareover B s₁₁ q₁₀ q₁₂ q q₂₁ :=
|
||||
begin
|
||||
induction s₁₁, induction q₁₀ using idp_rec_on, induction q₂₁ using idp_rec_on,
|
||||
induction q₁₂ using idp_rec_on, exact ⟨idpo, idso⟩
|
||||
end
|
||||
|
||||
definition squareover_fill_r : Σ (q : b₂₀ =[p₂₁] b₂₂) , squareover B s₁₁ q₁₀ q₁₂ q₀₁ q :=
|
||||
begin
|
||||
induction s₁₁, induction q₀₁ using idp_rec_on, induction q₁₀ using idp_rec_on,
|
||||
induction q₁₂ using idp_rec_on, exact ⟨idpo, idso⟩
|
||||
end
|
||||
|
||||
end eq
|
||||
|
|
121
hott/eq2.hlean
121
hott/eq2.hlean
|
@ -7,7 +7,7 @@ Theorems about 2-dimensional paths
|
|||
-/
|
||||
|
||||
import .cubical.square .function
|
||||
open function is_equiv equiv
|
||||
open function is_equiv equiv sigma trunc
|
||||
|
||||
namespace eq
|
||||
variables {A B C : Type} {f : A → B} {a a' a₁ a₂ a₃ a₄ : A} {b b' : B}
|
||||
|
@ -141,6 +141,10 @@ namespace eq
|
|||
: whisker_left p q⁻² ⬝ q = con.right_inv p :=
|
||||
by cases q; reflexivity
|
||||
|
||||
definition whisker_left_idp_square {A : Type} {a a' : A} {p q : a = a'} (r : p = q) :
|
||||
square (whisker_left idp r) r (idp_con p) (idp_con q) :=
|
||||
begin induction r, exact hrfl end
|
||||
|
||||
definition cast_fn_cast_square {A : Type} {B C : A → Type} (f : Π⦃a⦄, B a → C a) {a₁ a₂ : A}
|
||||
(p : a₁ = a₂) (q : a₂ = a₁) (r : p ⬝ q = idp) (b : B a₁) :
|
||||
cast (ap C q) (f (cast (ap B p) b)) = f b :=
|
||||
|
@ -206,53 +210,94 @@ namespace eq
|
|||
(q : p = p') : square (ap_constant p b) (ap_constant p' b) (ap02 (λx, b) q) idp :=
|
||||
by induction q; exact vrfl
|
||||
|
||||
section hsquare
|
||||
variables {A₀₀ A₂₀ A₄₀ A₀₂ A₂₂ A₄₂ A₀₄ A₂₄ A₄₄ : Type}
|
||||
{f₁₀ : A₀₀ → A₂₀} {f₃₀ : A₂₀ → A₄₀}
|
||||
{f₀₁ : A₀₀ → A₀₂} {f₂₁ : A₂₀ → A₂₂} {f₄₁ : A₄₀ → A₄₂}
|
||||
{f₁₂ : A₀₂ → A₂₂} {f₃₂ : A₂₂ → A₄₂}
|
||||
{f₀₃ : A₀₂ → A₀₄} {f₂₃ : A₂₂ → A₂₄} {f₄₃ : A₄₂ → A₄₄}
|
||||
{f₁₄ : A₀₄ → A₂₄} {f₃₄ : A₂₄ → A₄₄}
|
||||
definition ap_con_idp_left {A B : Type} (f : A → B) {a a' : A} (p : a = a') :
|
||||
square (ap_con f idp p) idp (ap02 f (idp_con p)) (idp_con (ap f p)) :=
|
||||
begin induction p, exact ids end
|
||||
|
||||
definition hsquare [reducible] (f₁₀ : A₀₀ → A₂₀) (f₁₂ : A₀₂ → A₂₂)
|
||||
(f₀₁ : A₀₀ → A₀₂) (f₂₁ : A₂₀ → A₂₂) : Type :=
|
||||
f₂₁ ∘ f₁₀ ~ f₁₂ ∘ f₀₁
|
||||
definition apd10_prepostcompose_nondep {A B C D : Type} (h : C → D) {g g' : B → C} (p : g = g')
|
||||
(f : A → B) (a : A) : apd10 (ap (λg a, h (g (f a))) p) a = ap h (apd10 p (f a)) :=
|
||||
begin induction p, reflexivity end
|
||||
|
||||
definition hsquare_of_homotopy (p : f₂₁ ∘ f₁₀ ~ f₁₂ ∘ f₀₁) : hsquare f₁₀ f₁₂ f₀₁ f₂₁ :=
|
||||
p
|
||||
definition apd10_prepostcompose {A B : Type} {C : B → Type} {D : A → Type}
|
||||
(f : A → B) (h : Πa, C (f a) → D a) {g g' : Πb, C b}
|
||||
(p : g = g') (a : A) :
|
||||
apd10 (ap (λg a, h a (g (f a))) p) a = ap (h a) (apd10 p (f a)) :=
|
||||
begin induction p, reflexivity end
|
||||
|
||||
definition homotopy_of_hsquare (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) : f₂₁ ∘ f₁₀ ~ f₁₂ ∘ f₀₁ :=
|
||||
p
|
||||
/- alternative induction principles -/
|
||||
definition eq.rec_to {A : Type} {a₀ : A} {P : Π⦃a₁⦄, a₀ = a₁ → Type}
|
||||
{a₁ : A} (p₀ : a₀ = a₁) (H : P p₀) ⦃a₂ : A⦄ (p : a₀ = a₂) : P p :=
|
||||
begin
|
||||
induction p₀, induction p, exact H
|
||||
end
|
||||
|
||||
definition homotopy_top_of_hsquare {f₂₁ : A₂₀ ≃ A₂₂} (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
f₁₀ ~ f₂₁⁻¹ ∘ f₁₂ ∘ f₀₁ :=
|
||||
homotopy_inv_of_homotopy_post _ _ _ p
|
||||
definition eq.rec_to2 {A : Type} {P : Π⦃a₀ a₁⦄, a₀ = a₁ → Type}
|
||||
{a₀ a₀' a₁' : A} (p' : a₀' = a₁') (p₀ : a₀ = a₀') (H : P p') ⦃a₁ : A⦄ (p : a₀ = a₁) : P p :=
|
||||
begin
|
||||
induction p₀, induction p', induction p, exact H
|
||||
end
|
||||
|
||||
definition homotopy_top_of_hsquare' [is_equiv f₂₁] (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
f₁₀ ~ f₂₁⁻¹ ∘ f₁₂ ∘ f₀₁ :=
|
||||
homotopy_inv_of_homotopy_post _ _ _ p
|
||||
definition eq.rec_right_inv {A : Type} (f : A ≃ A) {P : Π⦃a₀ a₁⦄, f a₀ = a₁ → Type}
|
||||
(H : Πa, P (right_inv f a)) ⦃a₀ a₁ : A⦄ (p : f a₀ = a₁) : P p :=
|
||||
begin
|
||||
revert a₀ p, refine equiv_rect f⁻¹ᵉ _ _,
|
||||
intro a₀ p, exact eq.rec_to (right_inv f a₀) (H a₀) p,
|
||||
end
|
||||
|
||||
definition hhconcat (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) (q : hsquare f₃₀ f₃₂ f₂₁ f₄₁) :
|
||||
hsquare (f₃₀ ∘ f₁₀) (f₃₂ ∘ f₁₂) f₀₁ f₄₁ :=
|
||||
hwhisker_right f₁₀ q ⬝hty hwhisker_left f₃₂ p
|
||||
definition eq.rec_equiv {A B : Type} {a₀ : A} (f : A ≃ B) {P : Π{a₁}, f a₀ = f a₁ → Type}
|
||||
(H : P (idpath (f a₀))) ⦃a₁ : A⦄ (p : f a₀ = f a₁) : P p :=
|
||||
begin
|
||||
assert qr : Σ(q : a₀ = a₁), ap f q = p,
|
||||
{ exact ⟨eq_of_fn_eq_fn f p, ap_eq_of_fn_eq_fn' f p⟩ },
|
||||
cases qr with q r, apply transport P r, induction q, exact H
|
||||
end
|
||||
|
||||
definition hvconcat (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) (q : hsquare f₁₂ f₁₄ f₀₃ f₂₃) :
|
||||
hsquare f₁₀ f₁₄ (f₀₃ ∘ f₀₁) (f₂₃ ∘ f₂₁) :=
|
||||
hwhisker_left f₂₃ p ⬝hty hwhisker_right f₀₁ q
|
||||
definition eq.rec_equiv_symm {A B : Type} {a₁ : A} (f : A ≃ B) {P : Π{a₀}, f a₀ = f a₁ → Type}
|
||||
(H : P (idpath (f a₁))) ⦃a₀ : A⦄ (p : f a₀ = f a₁) : P p :=
|
||||
begin
|
||||
assert qr : Σ(q : a₀ = a₁), ap f q = p,
|
||||
{ exact ⟨eq_of_fn_eq_fn f p, ap_eq_of_fn_eq_fn' f p⟩ },
|
||||
cases qr with q r, apply transport P r, induction q, exact H
|
||||
end
|
||||
|
||||
definition hhinverse {f₁₀ : A₀₀ ≃ A₂₀} {f₁₂ : A₀₂ ≃ A₂₂} (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
hsquare f₁₀⁻¹ᵉ f₁₂⁻¹ᵉ f₂₁ f₀₁ :=
|
||||
λb, eq_inv_of_eq ((p (f₁₀⁻¹ᵉ b))⁻¹ ⬝ ap f₂₁ (to_right_inv f₁₀ b))
|
||||
definition eq.rec_equiv_to_same {A B : Type} {a₀ : A} (f : A ≃ B) {P : Π{a₁}, f a₀ = f a₁ → Type}
|
||||
⦃a₁' : A⦄ (p' : f a₀ = f a₁') (H : P p') ⦃a₁ : A⦄ (p : f a₀ = f a₁) : P p :=
|
||||
begin
|
||||
revert a₁' p' H a₁ p,
|
||||
refine eq.rec_equiv f _,
|
||||
exact eq.rec_equiv f
|
||||
end
|
||||
|
||||
definition hvinverse {f₀₁ : A₀₀ ≃ A₀₂} {f₂₁ : A₂₀ ≃ A₂₂} (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
hsquare f₁₂ f₁₀ f₀₁⁻¹ᵉ f₂₁⁻¹ᵉ :=
|
||||
λa, inv_eq_of_eq (p (f₀₁⁻¹ᵉ a) ⬝ ap f₁₂ (to_right_inv f₀₁ a))⁻¹
|
||||
definition eq.rec_equiv_to {A A' B : Type} {a₀ : A} (f : A ≃ B) (g : A' ≃ B)
|
||||
{P : Π{a₁}, f a₀ = g a₁ → Type}
|
||||
⦃a₁' : A'⦄ (p' : f a₀ = g a₁') (H : P p') ⦃a₁ : A'⦄ (p : f a₀ = g a₁) : P p :=
|
||||
begin
|
||||
assert qr : Σ(q : g⁻¹ (f a₀) = a₁), (right_inv g (f a₀))⁻¹ ⬝ ap g q = p,
|
||||
{ exact ⟨eq_of_fn_eq_fn g (right_inv g (f a₀) ⬝ p),
|
||||
whisker_left _ (ap_eq_of_fn_eq_fn' g _) ⬝ !inv_con_cancel_left⟩ },
|
||||
assert q'r' : Σ(q' : g⁻¹ (f a₀) = a₁'), (right_inv g (f a₀))⁻¹ ⬝ ap g q' = p',
|
||||
{ exact ⟨eq_of_fn_eq_fn g (right_inv g (f a₀) ⬝ p'),
|
||||
whisker_left _ (ap_eq_of_fn_eq_fn' g _) ⬝ !inv_con_cancel_left⟩ },
|
||||
induction qr with q r, induction q'r' with q' r',
|
||||
induction q, induction q',
|
||||
induction r, induction r',
|
||||
exact H
|
||||
end
|
||||
|
||||
infix ` ⬝htyh `:73 := hhconcat
|
||||
infix ` ⬝htyv `:73 := hvconcat
|
||||
postfix `⁻¹ʰᵗʸʰ`:(max+1) := hhinverse
|
||||
postfix `⁻¹ʰᵗʸᵛ`:(max+1) := hvinverse
|
||||
definition eq.rec_grading {A A' B : Type} {a : A} (f : A ≃ B) (g : A' ≃ B)
|
||||
{P : Π{b}, f a = b → Type}
|
||||
{a' : A'} (p' : f a = g a') (H : P p') ⦃b : B⦄ (p : f a = b) : P p :=
|
||||
begin
|
||||
revert b p, refine equiv_rect g _ _,
|
||||
exact eq.rec_equiv_to f g p' H
|
||||
end
|
||||
|
||||
end hsquare
|
||||
definition eq.rec_grading_unbased {A B B' C : Type} (f : A ≃ B) (g : B ≃ C) (h : B' ≃ C)
|
||||
{P : Π{b c}, g b = c → Type}
|
||||
{a' : A} {b' : B'} (p' : g (f a') = h b') (H : P p') ⦃b : B⦄ ⦃c : C⦄ (q : f a' = b)
|
||||
(p : g b = c) : P p :=
|
||||
begin
|
||||
induction q, exact eq.rec_grading (f ⬝e g) h p' H p
|
||||
end
|
||||
|
||||
end eq
|
||||
|
|
|
@ -316,7 +316,7 @@ namespace circle
|
|||
begin
|
||||
induction x,
|
||||
{ apply base_eq_base_equiv},
|
||||
{ apply equiv_pathover, intro p p' q, apply pathover_of_eq,
|
||||
{ apply equiv_pathover2, intro p p' q, apply pathover_of_eq,
|
||||
note H := eq_of_square (square_of_pathover q),
|
||||
rewrite con_comm_base at H,
|
||||
note H' := cancel_left _ H,
|
||||
|
|
|
@ -458,11 +458,34 @@ namespace is_conn
|
|||
{ intro f', reflexivity }
|
||||
end
|
||||
|
||||
|
||||
definition is_contr_of_is_conn_of_is_trunc {n : ℕ₋₂} {A : Type} (H : is_trunc n A)
|
||||
(K : is_conn n A) : is_contr A :=
|
||||
is_contr_equiv_closed (trunc_equiv n A)
|
||||
|
||||
definition is_trunc_succ_succ_of_is_trunc_loop (n : ℕ₋₂) (A : Type*) (H : is_trunc (n.+1) (Ω A))
|
||||
(H2 : is_conn 0 A) : is_trunc (n.+2) A :=
|
||||
begin
|
||||
apply is_trunc_succ_of_is_trunc_loop, apply minus_one_le_succ,
|
||||
refine is_conn.elim -1 _ _, exact H
|
||||
end
|
||||
|
||||
lemma is_trunc_of_is_trunc_loopn (m n : ℕ) (A : Type*) (H : is_trunc n (Ω[m] A))
|
||||
(H2 : is_conn (m.-1) A) : is_trunc (m + n) A :=
|
||||
begin
|
||||
revert A H H2; induction m with m IH: intro A H H2,
|
||||
{ rewrite [nat.zero_add], exact H },
|
||||
rewrite [succ_add],
|
||||
apply is_trunc_succ_succ_of_is_trunc_loop,
|
||||
{ apply IH,
|
||||
{ apply is_trunc_equiv_closed _ !loopn_succ_in },
|
||||
apply is_conn_loop },
|
||||
exact is_conn_of_le _ (zero_le_of_nat m)
|
||||
end
|
||||
|
||||
lemma is_trunc_of_is_set_loopn (m : ℕ) (A : Type*) (H : is_set (Ω[m] A))
|
||||
(H2 : is_conn (m.-1) A) : is_trunc m A :=
|
||||
is_trunc_of_is_trunc_loopn m 0 A H H2
|
||||
|
||||
end is_conn
|
||||
|
||||
/-
|
||||
|
|
|
@ -32,7 +32,7 @@ namespace is_trunc
|
|||
: is_contr (π[k] A) :=
|
||||
begin
|
||||
have H3 : is_contr (ptrunc k A), from is_conn_of_le A (of_nat_le_of_nat H),
|
||||
have H4 : is_contr (Ω[k](ptrunc k A)), from !is_trunc_loop_of_is_trunc,
|
||||
have H4 : is_contr (Ω[k](ptrunc k A)), from !is_trunc_loopn_of_is_trunc,
|
||||
apply is_trunc_equiv_closed_rev,
|
||||
{ apply equiv_of_pequiv (homotopy_group_pequiv_loop_ptrunc k A)}
|
||||
end
|
||||
|
@ -206,6 +206,45 @@ namespace is_trunc
|
|||
cases A with A a, exact H k H'
|
||||
end
|
||||
|
||||
definition is_trunc_of_trivial_homotopy {n : ℕ} {m : ℕ₋₂} {A : Type} (H : is_trunc m A)
|
||||
(H2 : Πk a, k > n → is_contr (π[k] (pointed.MK A a))) : is_trunc n A :=
|
||||
begin
|
||||
fapply is_trunc_is_equiv_closed_rev, { exact @tr n A },
|
||||
apply whitehead_principle m,
|
||||
{ apply is_equiv_trunc_functor_of_is_conn_fun,
|
||||
note z := is_conn_fun_tr n A,
|
||||
apply is_conn_fun_of_le _ (of_nat_le_of_nat (zero_le n)), },
|
||||
intro a k,
|
||||
apply @nat.lt_ge_by_cases n (k+1),
|
||||
{ intro H3, apply @is_equiv_of_is_contr, exact H2 _ _ H3,
|
||||
refine @trivial_homotopy_group_of_is_trunc _ _ _ _ H3 },
|
||||
{ intro H3, apply @(is_equiv_π_of_is_connected _ H3), apply is_conn_fun_tr }
|
||||
end
|
||||
|
||||
definition is_trunc_of_trivial_homotopy_pointed {n : ℕ} {m : ℕ₋₂} {A : Type*} (H : is_trunc m A)
|
||||
(Hconn : is_conn 0 A) (H2 : Πk, k > n → is_contr (π[k] A)) : is_trunc n A :=
|
||||
begin
|
||||
apply is_trunc_of_trivial_homotopy H,
|
||||
intro k a H3, revert a, apply is_conn.elim -1,
|
||||
cases A with A a₀, exact H2 k H3
|
||||
end
|
||||
|
||||
definition is_trunc_of_is_trunc_succ {n : ℕ} {A : Type} (H : is_trunc (n.+1) A)
|
||||
(H2 : Πa, is_contr (π[n+1] (pointed.MK A a))) : is_trunc n A :=
|
||||
begin
|
||||
apply is_trunc_of_trivial_homotopy H,
|
||||
intro k a H3, induction H3 with k H3 IH, exact H2 a,
|
||||
apply @trivial_homotopy_group_of_is_trunc _ (n+1) _ H, exact succ_le_succ H3
|
||||
end
|
||||
|
||||
definition is_trunc_of_is_trunc_succ_pointed {n : ℕ} {A : Type*} (H : is_trunc (n.+1) A)
|
||||
(Hconn : is_conn 0 A) (H2 : is_contr (π[n+1] A)) : is_trunc n A :=
|
||||
begin
|
||||
apply is_trunc_of_trivial_homotopy_pointed H Hconn,
|
||||
intro k H3, induction H3 with k H3 IH, exact H2,
|
||||
apply @trivial_homotopy_group_of_is_trunc _ (n+1) _ H, exact succ_le_succ H3
|
||||
end
|
||||
|
||||
definition ab_group_homotopy_group_of_is_conn (n : ℕ) (A : Type*) [H : is_conn 1 A] :
|
||||
ab_group (π[n] A) :=
|
||||
begin
|
||||
|
|
|
@ -462,3 +462,69 @@ end is_equiv
|
|||
|
||||
export [unfold] equiv
|
||||
export [unfold] is_equiv
|
||||
|
||||
/- properties about squares of functions -/
|
||||
namespace eq
|
||||
|
||||
section hsquare
|
||||
variables {A₀₀ A₂₀ A₄₀ A₀₂ A₂₂ A₄₂ A₀₄ A₂₄ A₄₄ : Type}
|
||||
{f₁₀ : A₀₀ → A₂₀} {f₃₀ : A₂₀ → A₄₀}
|
||||
{f₀₁ : A₀₀ → A₀₂} {f₂₁ : A₂₀ → A₂₂} {f₄₁ : A₄₀ → A₄₂}
|
||||
{f₁₂ : A₀₂ → A₂₂} {f₃₂ : A₂₂ → A₄₂}
|
||||
{f₀₃ : A₀₂ → A₀₄} {f₂₃ : A₂₂ → A₂₄} {f₄₃ : A₄₂ → A₄₄}
|
||||
{f₁₄ : A₀₄ → A₂₄} {f₃₄ : A₂₄ → A₄₄}
|
||||
|
||||
definition hsquare [reducible] (f₁₀ : A₀₀ → A₂₀) (f₁₂ : A₀₂ → A₂₂)
|
||||
(f₀₁ : A₀₀ → A₀₂) (f₂₁ : A₂₀ → A₂₂) : Type :=
|
||||
f₂₁ ∘ f₁₀ ~ f₁₂ ∘ f₀₁
|
||||
|
||||
definition hsquare_of_homotopy (p : f₂₁ ∘ f₁₀ ~ f₁₂ ∘ f₀₁) : hsquare f₁₀ f₁₂ f₀₁ f₂₁ :=
|
||||
p
|
||||
|
||||
definition homotopy_of_hsquare (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) : f₂₁ ∘ f₁₀ ~ f₁₂ ∘ f₀₁ :=
|
||||
p
|
||||
|
||||
definition homotopy_top_of_hsquare {f₂₁ : A₂₀ ≃ A₂₂} (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
f₁₀ ~ f₂₁⁻¹ ∘ f₁₂ ∘ f₀₁ :=
|
||||
homotopy_inv_of_homotopy_post _ _ _ p
|
||||
|
||||
definition homotopy_top_of_hsquare' [is_equiv f₂₁] (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
f₁₀ ~ f₂₁⁻¹ ∘ f₁₂ ∘ f₀₁ :=
|
||||
homotopy_inv_of_homotopy_post _ _ _ p
|
||||
|
||||
definition hhconcat [unfold_full] (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) (q : hsquare f₃₀ f₃₂ f₂₁ f₄₁) :
|
||||
hsquare (f₃₀ ∘ f₁₀) (f₃₂ ∘ f₁₂) f₀₁ f₄₁ :=
|
||||
hwhisker_right f₁₀ q ⬝hty hwhisker_left f₃₂ p
|
||||
|
||||
definition hvconcat [unfold_full] (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) (q : hsquare f₁₂ f₁₄ f₀₃ f₂₃) :
|
||||
hsquare f₁₀ f₁₄ (f₀₃ ∘ f₀₁) (f₂₃ ∘ f₂₁) :=
|
||||
hwhisker_left f₂₃ p ⬝hty hwhisker_right f₀₁ q
|
||||
|
||||
definition hhinverse {f₁₀ : A₀₀ ≃ A₂₀} {f₁₂ : A₀₂ ≃ A₂₂} (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
hsquare f₁₀⁻¹ᵉ f₁₂⁻¹ᵉ f₂₁ f₀₁ :=
|
||||
λb, eq_inv_of_eq ((p (f₁₀⁻¹ᵉ b))⁻¹ ⬝ ap f₂₁ (to_right_inv f₁₀ b))
|
||||
|
||||
definition hvinverse {f₀₁ : A₀₀ ≃ A₀₂} {f₂₁ : A₂₀ ≃ A₂₂} (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
hsquare f₁₂ f₁₀ f₀₁⁻¹ᵉ f₂₁⁻¹ᵉ :=
|
||||
λa, inv_eq_of_eq (p (f₀₁⁻¹ᵉ a) ⬝ ap f₁₂ (to_right_inv f₀₁ a))⁻¹
|
||||
|
||||
infix ` ⬝htyh `:73 := hhconcat
|
||||
infix ` ⬝htyv `:73 := hvconcat
|
||||
postfix `⁻¹ʰᵗʸʰ`:(max+1) := hhinverse
|
||||
postfix `⁻¹ʰᵗʸᵛ`:(max+1) := hvinverse
|
||||
|
||||
definition rfl_hhconcat (q : hsquare f₃₀ f₃₂ f₂₁ f₄₁) : homotopy.rfl ⬝htyh q ~ q :=
|
||||
homotopy.rfl
|
||||
|
||||
definition hhconcat_rfl (q : hsquare f₃₀ f₃₂ f₂₁ f₄₁) : q ⬝htyh homotopy.rfl ~ q :=
|
||||
λx, !idp_con ⬝ ap_id (q x)
|
||||
|
||||
definition rfl_hvconcat (q : hsquare f₃₀ f₃₂ f₂₁ f₄₁) : homotopy.rfl ⬝htyv q ~ q :=
|
||||
λx, !idp_con
|
||||
|
||||
definition hvconcat_rfl (q : hsquare f₃₀ f₃₂ f₂₁ f₄₁) : q ⬝htyv homotopy.rfl ~ q :=
|
||||
λx, !ap_id
|
||||
|
||||
end hsquare
|
||||
|
||||
end eq
|
||||
|
|
|
@ -102,9 +102,10 @@ namespace nat
|
|||
protected definition le_trans {n m k : ℕ} (H1 : n ≤ m) : m ≤ k → n ≤ k :=
|
||||
le.rec H1 (λp H2, le.step)
|
||||
|
||||
definition le_succ_of_le {n m : ℕ} (H : n ≤ m) : n ≤ succ m := nat.le_trans H !le_succ
|
||||
definition le_succ_of_le {n m : ℕ} (H : n ≤ m) : n ≤ succ m := le.step H
|
||||
|
||||
definition le_of_succ_le {n m : ℕ} (H : succ n ≤ m) : n ≤ m := nat.le_trans !le_succ H
|
||||
definition le_of_succ_le {n m : ℕ} (H : succ n ≤ m) : n ≤ m :=
|
||||
by induction H with H m H'; exact le_succ n; exact le.step H'
|
||||
|
||||
protected definition le_of_lt {n m : ℕ} (H : n < m) : n ≤ m := le_of_succ_le H
|
||||
|
||||
|
|
|
@ -275,20 +275,20 @@ namespace eq
|
|||
definition hassoc {A B C D : Type} (h : C → D) (g : B → C) (f : A → B) : (h ∘ g) ∘ f ~ h ∘ (g ∘ f) :=
|
||||
λa, idp
|
||||
|
||||
definition homotopy_of_eq {f g : Πx, P x} (H1 : f = g) : f ~ g :=
|
||||
H1 ▸ homotopy.refl f
|
||||
definition homotopy_of_eq [unfold 5] {f g : Πx, P x} (H : f = g) : f ~ g :=
|
||||
λa, ap (λh, h a) H
|
||||
|
||||
definition apd10 [unfold 5] {f g : Πx, P x} (H : f = g) : f ~ g :=
|
||||
λx, by induction H; reflexivity
|
||||
λa, ap (λh, h a) H
|
||||
|
||||
--the next theorem is useful if you want to write "apply (apd10' a)"
|
||||
definition apd10' [unfold 6] {f g : Πx, P x} (a : A) (H : f = g) : f a = g a :=
|
||||
by induction H; reflexivity
|
||||
apd10 H a
|
||||
|
||||
--apd10 is also ap evaluation
|
||||
--apd10 is a special case of ap
|
||||
definition apd10_eq_ap_eval {f g : Πx, P x} (H : f = g) (a : A)
|
||||
: apd10 H a = ap (λs : Πx, P x, s a) H :=
|
||||
by induction H; reflexivity
|
||||
by reflexivity
|
||||
|
||||
definition ap10 [reducible] [unfold 5] {f g : A → B} (H : f = g) : f ~ g := apd10 H
|
||||
|
||||
|
|
|
@ -314,6 +314,10 @@ namespace eq
|
|||
(q : f =[p] g) (r : b =[p] b₂) : f b = g b₂ :=
|
||||
eq_of_pathover (apo11 q r)
|
||||
|
||||
definition apd02 [unfold 8] (f : Πa, B a) {a a' : A} {p q : a = a'}
|
||||
(r : p = q) : change_path r (apd f p) = apd f q :=
|
||||
by induction r; reflexivity
|
||||
|
||||
/- properties about these "ap"s, transporto and pathover_ap -/
|
||||
definition apd_con (f : Πa, B a) (p : a = a₂) (q : a₂ = a₃)
|
||||
: apd f (p ⬝ q) = apd f p ⬝o apd f q :=
|
||||
|
|
|
@ -83,6 +83,7 @@ namespace eq
|
|||
!idp_con⁻¹ ⬝ whisker_left idp r = r ⬝ !idp_con⁻¹ :=
|
||||
by induction r;induction q;reflexivity
|
||||
|
||||
-- this should maybe replace whisker_left_idp and whisker_left_idp_con
|
||||
definition whisker_left_idp_con {q q' : a₂ = a₃} (r : q = q') :
|
||||
whisker_left idp r ⬝ !idp_con = !idp_con ⬝ r :=
|
||||
by induction r;induction q;reflexivity
|
||||
|
@ -461,31 +462,36 @@ namespace eq
|
|||
|
||||
section
|
||||
parameters {A : Type} (a₀ : A) (code : A → Type) (H : is_contr (Σa, code a))
|
||||
(p : (center (Σa, code a)).1 = a₀)
|
||||
include p
|
||||
(c₀ : code a₀)
|
||||
include H c₀
|
||||
protected definition encode {a : A} (q : a₀ = a) : code a :=
|
||||
(p ⬝ q) ▸ (center (Σa, code a)).2
|
||||
transport code q c₀
|
||||
|
||||
protected definition decode' {a : A} (c : code a) : a₀ = a :=
|
||||
(is_prop.elim ⟨a₀, encode idp⟩ ⟨a, c⟩)..1
|
||||
have ⟨a₀, c₀⟩ = ⟨a, c⟩ :> Σa, code a, from !is_prop.elim,
|
||||
this..1
|
||||
|
||||
protected definition decode {a : A} (c : code a) : a₀ = a :=
|
||||
(decode' (encode idp))⁻¹ ⬝ decode' c
|
||||
(decode' c₀)⁻¹ ⬝ decode' c
|
||||
|
||||
open sigma.ops
|
||||
definition total_space_method (a : A) : (a₀ = a) ≃ code a :=
|
||||
begin
|
||||
fapply equiv.MK,
|
||||
{ exact encode},
|
||||
{ exact decode},
|
||||
{ intro c,
|
||||
unfold [encode, decode, decode'],
|
||||
induction p, esimp, rewrite [is_prop_elim_self,▸*,+idp_con],
|
||||
apply tr_eq_of_pathover,
|
||||
eapply @sigma.rec_on _ _ (λx, x.2 =[(is_prop.elim ⟨x.1, x.2⟩ ⟨a, c⟩)..1] c)
|
||||
(center (sigma code)),
|
||||
intro a c, apply eq_pr2},
|
||||
{ exact encode },
|
||||
{ exact decode },
|
||||
{ intro c, unfold [encode, decode, decode'],
|
||||
rewrite [is_prop_elim_self, ▸*, idp_con],
|
||||
apply tr_eq_of_pathover, apply eq_pr2 },
|
||||
{ intro q, induction q, esimp, apply con.left_inv, },
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
definition total_space_method2_refl {A : Type} (a₀ : A) (code : A → Type) (H : is_contr (Σa, code a))
|
||||
(c₀ : code a₀) : total_space_method a₀ code H c₀ a₀ idp = c₀ :=
|
||||
begin
|
||||
reflexivity
|
||||
end
|
||||
|
||||
definition encode_decode_method {A : Type} (a₀ a : A) (code : A → Type) (c₀ : code a₀)
|
||||
|
@ -498,7 +504,7 @@ namespace eq
|
|||
{ intro p, fapply sigma_eq,
|
||||
apply decode, exact p.2,
|
||||
apply encode_decode}},
|
||||
{ reflexivity}
|
||||
{ exact c₀ }
|
||||
end
|
||||
|
||||
end eq
|
||||
|
|
|
@ -228,6 +228,14 @@ namespace equiv
|
|||
definition equiv_eq {f f' : A ≃ B} (p : to_fun f ~ to_fun f') : f = f' :=
|
||||
by apply equiv_eq'; apply eq_of_homotopy p
|
||||
|
||||
definition ap_equiv_eq {X Y : Type} {e e' : X ≃ Y} (p : e ~ e') (x : X) :
|
||||
ap (λ(e : X ≃ Y), e x) (equiv_eq p) = p x :=
|
||||
begin
|
||||
cases e with e He, cases e' with e' He', esimp at *, esimp [equiv_eq],
|
||||
refine homotopy.rec_on' p _, intro q, induction q, esimp [equiv_eq', equiv_mk_eq],
|
||||
assert H : He = He', apply is_prop.elim, induction H, rewrite [is_prop_elimo_self]
|
||||
end
|
||||
|
||||
definition trans_symm (f : A ≃ B) (g : B ≃ C) : (f ⬝e g)⁻¹ᵉ = g⁻¹ᵉ ⬝e f⁻¹ᵉ :> (C ≃ A) :=
|
||||
equiv_eq' idp
|
||||
|
||||
|
@ -264,13 +272,30 @@ namespace equiv
|
|||
|
||||
definition equiv_pathover {A : Type} {a a' : A} (p : a = a')
|
||||
{B : A → Type} {C : A → Type} (f : B a ≃ C a) (g : B a' ≃ C a')
|
||||
(r : Π(b : B a) (b' : B a') (q : b =[p] b'), f b =[p] g b') : f =[p] g :=
|
||||
(r : to_fun f =[p] to_fun g) : f =[p] g :=
|
||||
begin
|
||||
fapply pathover_of_fn_pathover_fn,
|
||||
{ intro a, apply equiv.sigma_char},
|
||||
{ fapply sigma_pathover,
|
||||
esimp, apply arrow_pathover, exact r,
|
||||
apply is_prop.elimo}
|
||||
{ intro a, apply equiv.sigma_char },
|
||||
{ apply sigma_pathover _ _ _ r, apply is_prop.elimo }
|
||||
end
|
||||
|
||||
definition equiv_pathover2 {A : Type} {a a' : A} (p : a = a')
|
||||
{B : A → Type} {C : A → Type} (f : B a ≃ C a) (g : B a' ≃ C a')
|
||||
(r : Π(b : B a) (b' : B a') (q : b =[p] b'), f b =[p] g b') : f =[p] g :=
|
||||
begin
|
||||
apply equiv_pathover, apply arrow_pathover, exact r
|
||||
end
|
||||
|
||||
definition equiv_pathover_inv {A : Type} {a a' : A} (p : a = a')
|
||||
{B : A → Type} {C : A → Type} (f : B a ≃ C a) (g : B a' ≃ C a')
|
||||
(r : to_inv f =[p] to_inv g) : f =[p] g :=
|
||||
begin
|
||||
/- this proof is a bit weird, but it works -/
|
||||
apply equiv_pathover,
|
||||
change f⁻¹ᶠ⁻¹ᶠ =[p] g⁻¹ᶠ⁻¹ᶠ,
|
||||
apply apo (λ(a: A) (h : C a ≃ B a), h⁻¹ᶠ),
|
||||
apply equiv_pathover,
|
||||
exact r
|
||||
end
|
||||
|
||||
definition is_contr_equiv (A B : Type) [HA : is_contr A] [HB : is_contr B] : is_contr (A ≃ B) :=
|
||||
|
|
|
@ -138,14 +138,27 @@ namespace lift
|
|||
apply ua_refl}
|
||||
end
|
||||
|
||||
definition fiber_lift_functor {A B : Type} (f : A → B) (b : B) :
|
||||
fiber (lift_functor f) (up b) ≃ fiber f b :=
|
||||
begin
|
||||
fapply equiv.MK: intro v; cases v with a p,
|
||||
{ cases a with a, exact fiber.mk a (eq_of_fn_eq_fn' up p) },
|
||||
{ exact fiber.mk (up a) (ap up p) },
|
||||
{ apply ap (fiber.mk a), apply eq_of_fn_eq_fn'_ap },
|
||||
{ cases a with a, esimp, apply ap (fiber.mk (up a)), apply ap_eq_of_fn_eq_fn' }
|
||||
end
|
||||
|
||||
definition lift_functor2 {A B C : Type} (f : A → B → C) (x : lift A) (y : lift B) : lift C :=
|
||||
up (f (down x) (down y))
|
||||
|
||||
-- is_trunc_lift is defined in init.trunc
|
||||
|
||||
definition plift [constructor] (A : pType.{u}) : pType.{max u v} :=
|
||||
pointed.MK (lift A) (up pt)
|
||||
|
||||
definition plift_functor [constructor] {A B : Type*} (f : A →* B) : plift A →* plift B :=
|
||||
pmap.mk (lift_functor f) (ap up (respect_pt f))
|
||||
|
||||
-- is_trunc_lift is defined in init.trunc
|
||||
|
||||
definition pup [constructor] {A : Type*} : A →* plift A :=
|
||||
pmap.mk up idp
|
||||
|
||||
|
@ -164,15 +177,8 @@ namespace lift
|
|||
definition pequiv_plift [constructor] (A : Type*) : A ≃* plift A :=
|
||||
pequiv_of_equiv (equiv_lift A) idp
|
||||
|
||||
definition fiber_lift_functor {A B : Type} (f : A → B) (b : B) :
|
||||
fiber (lift_functor f) (up b) ≃ fiber f b :=
|
||||
begin
|
||||
fapply equiv.MK: intro v; cases v with a p,
|
||||
{ cases a with a, exact fiber.mk a (eq_of_fn_eq_fn' up p) },
|
||||
{ exact fiber.mk (up a) (ap up p) },
|
||||
{ apply ap (fiber.mk a), apply eq_of_fn_eq_fn'_ap },
|
||||
{ cases a with a, esimp, apply ap (fiber.mk (up a)), apply ap_eq_of_fn_eq_fn' }
|
||||
end
|
||||
|
||||
definition is_trunc_plift [instance] [priority 1450] (A : Type*) (n : ℕ₋₂)
|
||||
[H : is_trunc n A] : is_trunc n (plift A) :=
|
||||
is_trunc_lift A n
|
||||
|
||||
end lift
|
||||
|
|
|
@ -315,4 +315,5 @@ definition iterate {A : Type} (op : A → A) : ℕ → A → A
|
|||
| (succ k) := λ a, op (iterate k a)
|
||||
|
||||
notation f `^[`:80 n:0 `]`:0 := iterate f n
|
||||
|
||||
end
|
||||
|
|
|
@ -137,6 +137,46 @@ namespace nat
|
|||
{ exact H2 k}
|
||||
end
|
||||
|
||||
protected definition rec_down (P : ℕ → Type) (s : ℕ) (H0 : P s) (Hs : Πn, P (n+1) → P n) : P 0 :=
|
||||
begin
|
||||
induction s with s IH,
|
||||
{ exact H0 },
|
||||
{ exact IH (Hs s H0) }
|
||||
end
|
||||
|
||||
definition rec_down_le (P : ℕ → Type) (s : ℕ) (H0 : Πn, s ≤ n → P n) (Hs : Πn, P (n+1) → P n)
|
||||
: Πn, P n :=
|
||||
begin
|
||||
induction s with s IH: intro n,
|
||||
{ exact H0 n (zero_le n) },
|
||||
{ apply IH, intro n' H, induction H with n' H IH2, apply Hs, exact H0 _ !le.refl,
|
||||
exact H0 _ (succ_le_succ H) }
|
||||
end
|
||||
|
||||
definition rec_down_le_univ {P : ℕ → Type} {s : ℕ} {H0 : Π⦃n⦄, s ≤ n → P n}
|
||||
{Hs : Π⦃n⦄, P (n+1) → P n} (Q : Π⦃n⦄, P n → P (n + 1) → Type)
|
||||
(HQ0 : Πn (H : s ≤ n), Q (H0 H) (H0 (le.step H))) (HQs : Πn (p : P (n+1)), Q (Hs p) p) :
|
||||
Πn, Q (rec_down_le P s H0 Hs n) (rec_down_le P s H0 Hs (n + 1)) :=
|
||||
begin
|
||||
induction s with s IH: intro n,
|
||||
{ apply HQ0 },
|
||||
{ apply IH, intro n' H, induction H with n' H IH2,
|
||||
{ esimp, apply HQs },
|
||||
{ apply HQ0 }}
|
||||
end
|
||||
|
||||
definition rec_down_le_beta_ge (P : ℕ → Type) (s : ℕ) (H0 : Πn, s ≤ n → P n)
|
||||
(Hs : Πn, P (n+1) → P n) (n : ℕ) (Hn : s ≤ n) : rec_down_le P s H0 Hs n = H0 n Hn :=
|
||||
begin
|
||||
revert n Hn, induction s with s IH: intro n Hn,
|
||||
{ exact ap (H0 n) !is_prop.elim },
|
||||
{ have Hn' : s ≤ n, from le.trans !self_le_succ Hn,
|
||||
refine IH _ _ Hn' ⬝ _,
|
||||
induction Hn' with n Hn' IH',
|
||||
{ exfalso, exact not_succ_le_self Hn },
|
||||
{ exact ap (H0 (succ n)) !is_prop.elim }}
|
||||
end
|
||||
|
||||
/- this inequality comes up a couple of times when using the freudenthal suspension theorem -/
|
||||
definition add_mul_le_mul_add (n m k : ℕ) : n + (succ m) * k ≤ (succ m) * (n + k) :=
|
||||
calc
|
||||
|
@ -213,14 +253,26 @@ namespace nat
|
|||
refine ap (f^[n]) _ ⬝ !iterate_succ⁻¹, exact !to_right_inv⁻¹ }
|
||||
end
|
||||
|
||||
definition iterate_hsquare {A B : Type} {f : A → A} {g : B → B}
|
||||
(h : A → B) (p : hsquare f g h h) (n : ℕ) : hsquare (f^[n]) (g^[n]) h h :=
|
||||
begin
|
||||
induction n with n q,
|
||||
exact homotopy.rfl,
|
||||
exact q ⬝htyh p
|
||||
end
|
||||
|
||||
definition iterate_commute {A : Type} {f g : A → A} (n : ℕ) (h : f ∘ g ~ g ∘ f) :
|
||||
iterate f n ∘ g ~ g ∘ iterate f n :=
|
||||
by induction n with n IH; reflexivity; exact λx, ap f (IH x) ⬝ !h
|
||||
f^[n] ∘ g ~ g ∘ f^[n] :=
|
||||
(iterate_hsquare g h⁻¹ʰᵗʸ n)⁻¹ʰᵗʸ
|
||||
|
||||
definition iterate_equiv {A : Type} (f : A ≃ A) (n : ℕ) : A ≃ A :=
|
||||
equiv.mk (iterate f n)
|
||||
(by induction n with n IH; apply is_equiv_id; exact is_equiv_compose f (iterate f n))
|
||||
|
||||
definition iterate_equiv2 {A : Type} {C : A → Type} (f : A → A) (h : Πa, C a ≃ C (f a))
|
||||
(k : ℕ) (a : A) : C a ≃ C (f^[k] a) :=
|
||||
begin induction k with k IH, reflexivity, exact IH ⬝e h (f^[k] a) end
|
||||
|
||||
definition iterate_inv {A : Type} (f : A ≃ A) (n : ℕ) :
|
||||
(iterate_equiv f n)⁻¹ ~ iterate f⁻¹ n :=
|
||||
begin
|
||||
|
@ -235,6 +287,10 @@ namespace nat
|
|||
definition iterate_right_inv {A : Type} (f : A ≃ A) (n : ℕ) (a : A) : f^[n] (f⁻¹ᵉ^[n] a) = a :=
|
||||
ap (f^[n]) (iterate_inv f n a)⁻¹ ⬝ to_right_inv (iterate_equiv f n) a
|
||||
|
||||
/- the same theorem add_le_add_left but with a proof by structural induction -/
|
||||
definition nat.add_le_add_left2 {n m : ℕ} (H : n ≤ m) (k : ℕ) : k + n ≤ k + m :=
|
||||
by induction H with m H H₂; reflexivity; exact le.step H₂
|
||||
|
||||
|
||||
|
||||
end nat
|
||||
|
|
|
@ -16,36 +16,15 @@ namespace pi
|
|||
{D : Πa b, C a b → Type}
|
||||
{a a' a'' : A} {b b₁ b₂ : B a} {b' : B a'} {b'' : B a''} {f g : Πa, B a}
|
||||
|
||||
/- Paths -/
|
||||
|
||||
/-
|
||||
Paths [p : f ≈ g] in a function type [Πx:X, P x] are equivalent to functions taking values
|
||||
in path types, [H : Πx:X, f x ≈ g x], or concisely, [H : f ~ g].
|
||||
|
||||
This equivalence, however, is just the combination of [apd10] and function extensionality
|
||||
[funext], and as such, [eq_of_homotopy]
|
||||
|
||||
Now we show how these things compute.
|
||||
-/
|
||||
|
||||
definition apd10_eq_of_homotopy (h : f ~ g) : apd10 (eq_of_homotopy h) ~ h :=
|
||||
apd10 (right_inv apd10 h)
|
||||
|
||||
definition eq_of_homotopy_eta (p : f = g) : eq_of_homotopy (apd10 p) = p :=
|
||||
left_inv apd10 p
|
||||
|
||||
definition eq_of_homotopy_idp (f : Πa, B a) : eq_of_homotopy (λx : A, refl (f x)) = refl f :=
|
||||
!eq_of_homotopy_eta
|
||||
/- Paths are charactirized in [init/funext] -/
|
||||
|
||||
/- homotopy.symm is an equivalence -/
|
||||
definition homotopy.symm_symm {A : Type} {P : A → Type} {f g : Πx, P x} (H : f ~ g) :
|
||||
H⁻¹ʰᵗʸ⁻¹ʰᵗʸ = H :=
|
||||
begin apply eq_of_homotopy, intro x, apply inv_inv end
|
||||
|
||||
definition is_equiv_homotopy_symm : is_equiv (homotopy.symm : f ~ g → g ~ f) :=
|
||||
begin
|
||||
fapply adjointify homotopy.symm homotopy.symm,
|
||||
{ intro p, apply eq_of_homotopy, intro a,
|
||||
unfold homotopy.symm, apply inv_inv },
|
||||
{ intro p, apply eq_of_homotopy, intro a,
|
||||
unfold homotopy.symm, apply inv_inv }
|
||||
end
|
||||
adjointify homotopy.symm homotopy.symm homotopy.symm_symm homotopy.symm_symm
|
||||
|
||||
/-
|
||||
The identification of the path space of a dependent function space,
|
||||
|
|
|
@ -70,13 +70,13 @@ namespace pointed
|
|||
: Σ(p : carrier A = carrier B :> Type), Point A =[p] Point B :=
|
||||
by induction p; exact ⟨idp, idpo⟩
|
||||
|
||||
protected definition pType.sigma_char.{u} : pType.{u} ≃ Σ(X : Type.{u}), X :=
|
||||
definition pType.sigma_char.{u} [constructor] : pType.{u} ≃ Σ(X : Type.{u}), X :=
|
||||
begin
|
||||
fapply equiv.MK,
|
||||
{ intro x, induction x with X x, exact ⟨X, x⟩},
|
||||
{ intro x, induction x with X x, exact pointed.MK X x},
|
||||
{ intro x, induction x with X x, reflexivity},
|
||||
{ intro x, induction x with X x, reflexivity},
|
||||
{ intro X, exact ⟨X, pt⟩ },
|
||||
{ intro X, exact pointed.MK X.1 X.2 },
|
||||
{ intro x, induction x with X x, reflexivity },
|
||||
{ intro x, induction x with X x, reflexivity },
|
||||
end
|
||||
|
||||
definition pType.eta_expand [constructor] (A : Type*) : Type* :=
|
||||
|
@ -168,6 +168,16 @@ namespace pointed
|
|||
definition pmap.eta_expand [constructor] {A B : Type*} (f : A →* B) : A →* B :=
|
||||
pmap.mk f (respect_pt f)
|
||||
|
||||
definition pmap_eta [constructor] {X Y : Type*} (f : X →* Y) : f ~* pmap.mk f (respect_pt f) :=
|
||||
begin
|
||||
fapply phomotopy.mk,
|
||||
reflexivity,
|
||||
esimp, exact !idp_con
|
||||
end
|
||||
|
||||
definition pmap_eta_eq {A B : Type*} (f : A →* B) : pmap.mk f (respect_pt f) = f :=
|
||||
begin induction f, reflexivity end
|
||||
|
||||
definition pmap_equiv_right (A : Type*) (B : Type)
|
||||
: (Σ(b : B), A →* (pointed.Mk b)) ≃ (A → B) :=
|
||||
begin
|
||||
|
@ -201,7 +211,7 @@ namespace pointed
|
|||
we generalize the definition of ap1 to arbitrary paths, so that we can prove properties about it
|
||||
using path induction (see for example ap1_gen_con and ap1_gen_con_natural)
|
||||
-/
|
||||
definition ap1_gen [reducible] [unfold 6 9 10] {A B : Type} (f : A → B) {a a' : A}
|
||||
definition ap1_gen [reducible] [unfold 8 9 10] {A B : Type} (f : A → B) {a a' : A}
|
||||
{b b' : B} (q : f a = b) (q' : f a' = b') (p : a = a') : b = b' :=
|
||||
q⁻¹ ⬝ ap f p ⬝ q'
|
||||
|
||||
|
@ -1189,4 +1199,100 @@ namespace pointed
|
|||
apply apn_succ_phomotopy_in
|
||||
end
|
||||
|
||||
section psquare
|
||||
/-
|
||||
Squares of pointed maps
|
||||
|
||||
We treat expressions of the form
|
||||
psquare f g h k :≡ k ∘* f ~* g ∘* h
|
||||
as squares, where f is the top, g is the bottom, h is the left face and k is the right face.
|
||||
Then the following are operations on squares
|
||||
-/
|
||||
|
||||
variables {A' A₀₀ A₂₀ A₄₀ A₀₂ A₂₂ A₄₂ A₀₄ A₂₄ A₄₄ : Type*}
|
||||
{f₁₀ f₁₀' : A₀₀ →* A₂₀} {f₃₀ : A₂₀ →* A₄₀}
|
||||
{f₀₁ f₀₁' : A₀₀ →* A₀₂} {f₂₁ f₂₁' : A₂₀ →* A₂₂} {f₄₁ : A₄₀ →* A₄₂}
|
||||
{f₁₂ f₁₂' : A₀₂ →* A₂₂} {f₃₂ : A₂₂ →* A₄₂}
|
||||
{f₀₃ : A₀₂ →* A₀₄} {f₂₃ : A₂₂ →* A₂₄} {f₄₃ : A₄₂ →* A₄₄}
|
||||
{f₁₄ : A₀₄ →* A₂₄} {f₃₄ : A₂₄ →* A₄₄}
|
||||
|
||||
definition psquare [reducible] (f₁₀ : A₀₀ →* A₂₀) (f₁₂ : A₀₂ →* A₂₂)
|
||||
(f₀₁ : A₀₀ →* A₀₂) (f₂₁ : A₂₀ →* A₂₂) : Type :=
|
||||
f₂₁ ∘* f₁₀ ~* f₁₂ ∘* f₀₁
|
||||
|
||||
definition psquare_of_phomotopy (p : f₂₁ ∘* f₁₀ ~* f₁₂ ∘* f₀₁) : psquare f₁₀ f₁₂ f₀₁ f₂₁ :=
|
||||
p
|
||||
|
||||
definition phomotopy_of_psquare (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : f₂₁ ∘* f₁₀ ~* f₁₂ ∘* f₀₁ :=
|
||||
p
|
||||
|
||||
definition phdeg_square {f f' : A →* A'} (p : f ~* f') : psquare !pid !pid f f' :=
|
||||
!pcompose_pid ⬝* p⁻¹* ⬝* !pid_pcompose⁻¹*
|
||||
definition pvdeg_square {f f' : A →* A'} (p : f ~* f') : psquare f f' !pid !pid :=
|
||||
!pid_pcompose ⬝* p ⬝* !pcompose_pid⁻¹*
|
||||
|
||||
variables (f₀₁ f₁₀)
|
||||
definition phrefl : psquare !pid !pid f₀₁ f₀₁ := phdeg_square phomotopy.rfl
|
||||
definition pvrefl : psquare f₁₀ f₁₀ !pid !pid := pvdeg_square phomotopy.rfl
|
||||
variables {f₀₁ f₁₀}
|
||||
definition phrfl : psquare !pid !pid f₀₁ f₀₁ := phrefl f₀₁
|
||||
definition pvrfl : psquare f₁₀ f₁₀ !pid !pid := pvrefl f₁₀
|
||||
|
||||
definition phconcat (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : psquare f₃₀ f₃₂ f₂₁ f₄₁) :
|
||||
psquare (f₃₀ ∘* f₁₀) (f₃₂ ∘* f₁₂) f₀₁ f₄₁ :=
|
||||
!passoc⁻¹* ⬝* pwhisker_right f₁₀ q ⬝* !passoc ⬝* pwhisker_left f₃₂ p ⬝* !passoc⁻¹*
|
||||
|
||||
definition pvconcat (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : psquare f₁₂ f₁₄ f₀₃ f₂₃) :
|
||||
psquare f₁₀ f₁₄ (f₀₃ ∘* f₀₁) (f₂₃ ∘* f₂₁) :=
|
||||
!passoc ⬝* pwhisker_left _ p ⬝* !passoc⁻¹* ⬝* pwhisker_right _ q ⬝* !passoc
|
||||
|
||||
definition phinverse {f₁₀ : A₀₀ ≃* A₂₀} {f₁₂ : A₀₂ ≃* A₂₂} (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
psquare f₁₀⁻¹ᵉ* f₁₂⁻¹ᵉ* f₂₁ f₀₁ :=
|
||||
!pid_pcompose⁻¹* ⬝* pwhisker_right _ (pleft_inv f₁₂)⁻¹* ⬝* !passoc ⬝*
|
||||
pwhisker_left _
|
||||
(!passoc⁻¹* ⬝* pwhisker_right _ p⁻¹* ⬝* !passoc ⬝* pwhisker_left _ !pright_inv ⬝* !pcompose_pid)
|
||||
|
||||
definition pvinverse {f₀₁ : A₀₀ ≃* A₀₂} {f₂₁ : A₂₀ ≃* A₂₂} (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
psquare f₁₂ f₁₀ f₀₁⁻¹ᵉ* f₂₁⁻¹ᵉ* :=
|
||||
(phinverse p⁻¹*)⁻¹*
|
||||
|
||||
definition phomotopy_hconcat (q : f₀₁' ~* f₀₁) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
psquare f₁₀ f₁₂ f₀₁' f₂₁ :=
|
||||
p ⬝* pwhisker_left f₁₂ q⁻¹*
|
||||
|
||||
definition hconcat_phomotopy (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : f₂₁' ~* f₂₁) :
|
||||
psquare f₁₀ f₁₂ f₀₁ f₂₁' :=
|
||||
pwhisker_right f₁₀ q ⬝* p
|
||||
|
||||
definition phomotopy_vconcat (q : f₁₀' ~* f₁₀) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
psquare f₁₀' f₁₂ f₀₁ f₂₁ :=
|
||||
pwhisker_left f₂₁ q ⬝* p
|
||||
|
||||
definition vconcat_phomotopy (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : f₁₂' ~* f₁₂) :
|
||||
psquare f₁₀ f₁₂' f₀₁ f₂₁ :=
|
||||
p ⬝* pwhisker_right f₀₁ q⁻¹*
|
||||
|
||||
infix ` ⬝h* `:73 := phconcat
|
||||
infix ` ⬝v* `:73 := pvconcat
|
||||
infixl ` ⬝hp* `:72 := hconcat_phomotopy
|
||||
infixr ` ⬝ph* `:72 := phomotopy_hconcat
|
||||
infixl ` ⬝vp* `:72 := vconcat_phomotopy
|
||||
infixr ` ⬝pv* `:72 := phomotopy_vconcat
|
||||
postfix `⁻¹ʰ*`:(max+1) := phinverse
|
||||
postfix `⁻¹ᵛ*`:(max+1) := pvinverse
|
||||
|
||||
definition pwhisker_tl (f : A →* A₀₀) (q : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
psquare (f₁₀ ∘* f) f₁₂ (f₀₁ ∘* f) f₂₁ :=
|
||||
!passoc⁻¹* ⬝* pwhisker_right f q ⬝* !passoc
|
||||
|
||||
definition ap1_psquare (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
psquare (Ω→ f₁₀) (Ω→ f₁₂) (Ω→ f₀₁) (Ω→ f₂₁) :=
|
||||
!ap1_pcompose⁻¹* ⬝* ap1_phomotopy p ⬝* !ap1_pcompose
|
||||
|
||||
definition apn_psquare (n : ℕ) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
psquare (Ω→[n] f₁₀) (Ω→[n] f₁₂) (Ω→[n] f₀₁) (Ω→[n] f₂₁) :=
|
||||
!apn_pcompose⁻¹* ⬝* apn_phomotopy n p ⬝* !apn_pcompose
|
||||
|
||||
end psquare
|
||||
|
||||
end pointed
|
||||
|
|
|
@ -13,125 +13,13 @@ Contains
|
|||
-/
|
||||
|
||||
|
||||
import algebra.homotopy_group eq2
|
||||
import eq2 .unit
|
||||
|
||||
open pointed eq unit is_trunc trunc nat group is_equiv equiv sigma function bool
|
||||
open pointed eq unit is_trunc trunc nat is_equiv equiv sigma function bool sigma.ops
|
||||
|
||||
namespace pointed
|
||||
variables {A B C : Type*} {P : A → Type} {p₀ : P pt} {k k' l m n : ppi P p₀}
|
||||
|
||||
section psquare
|
||||
/-
|
||||
Squares of pointed maps
|
||||
|
||||
We treat expressions of the form
|
||||
psquare f g h k :≡ k ∘* f ~* g ∘* h
|
||||
as squares, where f is the top, g is the bottom, h is the left face and k is the right face.
|
||||
Then the following are operations on squares
|
||||
-/
|
||||
|
||||
variables {A' A₀₀ A₂₀ A₄₀ A₀₂ A₂₂ A₄₂ A₀₄ A₂₄ A₄₄ : Type*}
|
||||
{f₁₀ f₁₀' : A₀₀ →* A₂₀} {f₃₀ : A₂₀ →* A₄₀}
|
||||
{f₀₁ f₀₁' : A₀₀ →* A₀₂} {f₂₁ f₂₁' : A₂₀ →* A₂₂} {f₄₁ : A₄₀ →* A₄₂}
|
||||
{f₁₂ f₁₂' : A₀₂ →* A₂₂} {f₃₂ : A₂₂ →* A₄₂}
|
||||
{f₀₃ : A₀₂ →* A₀₄} {f₂₃ : A₂₂ →* A₂₄} {f₄₃ : A₄₂ →* A₄₄}
|
||||
{f₁₄ : A₀₄ →* A₂₄} {f₃₄ : A₂₄ →* A₄₄}
|
||||
|
||||
definition psquare [reducible] (f₁₀ : A₀₀ →* A₂₀) (f₁₂ : A₀₂ →* A₂₂)
|
||||
(f₀₁ : A₀₀ →* A₀₂) (f₂₁ : A₂₀ →* A₂₂) : Type :=
|
||||
f₂₁ ∘* f₁₀ ~* f₁₂ ∘* f₀₁
|
||||
|
||||
definition psquare_of_phomotopy (p : f₂₁ ∘* f₁₀ ~* f₁₂ ∘* f₀₁) : psquare f₁₀ f₁₂ f₀₁ f₂₁ :=
|
||||
p
|
||||
|
||||
definition phomotopy_of_psquare (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : f₂₁ ∘* f₁₀ ~* f₁₂ ∘* f₀₁ :=
|
||||
p
|
||||
|
||||
definition phdeg_square {f f' : A →* A'} (p : f ~* f') : psquare !pid !pid f f' :=
|
||||
!pcompose_pid ⬝* p⁻¹* ⬝* !pid_pcompose⁻¹*
|
||||
definition pvdeg_square {f f' : A →* A'} (p : f ~* f') : psquare f f' !pid !pid :=
|
||||
!pid_pcompose ⬝* p ⬝* !pcompose_pid⁻¹*
|
||||
|
||||
variables (f₀₁ f₁₀)
|
||||
definition phrefl : psquare !pid !pid f₀₁ f₀₁ := phdeg_square phomotopy.rfl
|
||||
definition pvrefl : psquare f₁₀ f₁₀ !pid !pid := pvdeg_square phomotopy.rfl
|
||||
variables {f₀₁ f₁₀}
|
||||
definition phrfl : psquare !pid !pid f₀₁ f₀₁ := phrefl f₀₁
|
||||
definition pvrfl : psquare f₁₀ f₁₀ !pid !pid := pvrefl f₁₀
|
||||
|
||||
definition phconcat (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : psquare f₃₀ f₃₂ f₂₁ f₄₁) :
|
||||
psquare (f₃₀ ∘* f₁₀) (f₃₂ ∘* f₁₂) f₀₁ f₄₁ :=
|
||||
!passoc⁻¹* ⬝* pwhisker_right f₁₀ q ⬝* !passoc ⬝* pwhisker_left f₃₂ p ⬝* !passoc⁻¹*
|
||||
|
||||
definition pvconcat (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : psquare f₁₂ f₁₄ f₀₃ f₂₃) :
|
||||
psquare f₁₀ f₁₄ (f₀₃ ∘* f₀₁) (f₂₃ ∘* f₂₁) :=
|
||||
!passoc ⬝* pwhisker_left _ p ⬝* !passoc⁻¹* ⬝* pwhisker_right _ q ⬝* !passoc
|
||||
|
||||
definition phinverse {f₁₀ : A₀₀ ≃* A₂₀} {f₁₂ : A₀₂ ≃* A₂₂} (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
psquare f₁₀⁻¹ᵉ* f₁₂⁻¹ᵉ* f₂₁ f₀₁ :=
|
||||
!pid_pcompose⁻¹* ⬝* pwhisker_right _ (pleft_inv f₁₂)⁻¹* ⬝* !passoc ⬝*
|
||||
pwhisker_left _
|
||||
(!passoc⁻¹* ⬝* pwhisker_right _ p⁻¹* ⬝* !passoc ⬝* pwhisker_left _ !pright_inv ⬝* !pcompose_pid)
|
||||
|
||||
definition pvinverse {f₀₁ : A₀₀ ≃* A₀₂} {f₂₁ : A₂₀ ≃* A₂₂} (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
psquare f₁₂ f₁₀ f₀₁⁻¹ᵉ* f₂₁⁻¹ᵉ* :=
|
||||
(phinverse p⁻¹*)⁻¹*
|
||||
|
||||
definition phomotopy_hconcat (q : f₀₁' ~* f₀₁) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
psquare f₁₀ f₁₂ f₀₁' f₂₁ :=
|
||||
p ⬝* pwhisker_left f₁₂ q⁻¹*
|
||||
|
||||
definition hconcat_phomotopy (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : f₂₁' ~* f₂₁) :
|
||||
psquare f₁₀ f₁₂ f₀₁ f₂₁' :=
|
||||
pwhisker_right f₁₀ q ⬝* p
|
||||
|
||||
definition phomotopy_vconcat (q : f₁₀' ~* f₁₀) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
psquare f₁₀' f₁₂ f₀₁ f₂₁ :=
|
||||
pwhisker_left f₂₁ q ⬝* p
|
||||
|
||||
definition vconcat_phomotopy (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : f₁₂' ~* f₁₂) :
|
||||
psquare f₁₀ f₁₂' f₀₁ f₂₁ :=
|
||||
p ⬝* pwhisker_right f₀₁ q⁻¹*
|
||||
|
||||
infix ` ⬝h* `:73 := phconcat
|
||||
infix ` ⬝v* `:73 := pvconcat
|
||||
infixl ` ⬝hp* `:72 := hconcat_phomotopy
|
||||
infixr ` ⬝ph* `:72 := phomotopy_hconcat
|
||||
infixl ` ⬝vp* `:72 := vconcat_phomotopy
|
||||
infixr ` ⬝pv* `:72 := phomotopy_vconcat
|
||||
postfix `⁻¹ʰ*`:(max+1) := phinverse
|
||||
postfix `⁻¹ᵛ*`:(max+1) := pvinverse
|
||||
|
||||
definition pwhisker_tl (f : A →* A₀₀) (q : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
psquare (f₁₀ ∘* f) f₁₂ (f₀₁ ∘* f) f₂₁ :=
|
||||
!passoc⁻¹* ⬝* pwhisker_right f q ⬝* !passoc
|
||||
|
||||
definition ap1_psquare (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
psquare (Ω→ f₁₀) (Ω→ f₁₂) (Ω→ f₀₁) (Ω→ f₂₁) :=
|
||||
!ap1_pcompose⁻¹* ⬝* ap1_phomotopy p ⬝* !ap1_pcompose
|
||||
|
||||
definition apn_psquare (n : ℕ) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
psquare (Ω→[n] f₁₀) (Ω→[n] f₁₂) (Ω→[n] f₀₁) (Ω→[n] f₂₁) :=
|
||||
!apn_pcompose⁻¹* ⬝* apn_phomotopy n p ⬝* !apn_pcompose
|
||||
|
||||
definition ptrunc_functor_psquare (n : ℕ₋₂) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
psquare (ptrunc_functor n f₁₀) (ptrunc_functor n f₁₂)
|
||||
(ptrunc_functor n f₀₁) (ptrunc_functor n f₂₁) :=
|
||||
!ptrunc_functor_pcompose⁻¹* ⬝* ptrunc_functor_phomotopy n p ⬝* !ptrunc_functor_pcompose
|
||||
|
||||
definition homotopy_group_functor_psquare (n : ℕ) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
psquare (π→[n] f₁₀) (π→[n] f₁₂) (π→[n] f₀₁) (π→[n] f₂₁) :=
|
||||
!homotopy_group_functor_compose⁻¹* ⬝* homotopy_group_functor_phomotopy n p ⬝*
|
||||
!homotopy_group_functor_compose
|
||||
|
||||
definition homotopy_group_homomorphism_psquare (n : ℕ) [H : is_succ n]
|
||||
(p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : hsquare (π→g[n] f₁₀) (π→g[n] f₁₂) (π→g[n] f₀₁) (π→g[n] f₂₁) :=
|
||||
begin
|
||||
induction H with n, exact to_homotopy (ptrunc_functor_psquare 0 (apn_psquare (succ n) p))
|
||||
end
|
||||
|
||||
end psquare
|
||||
|
||||
definition punit_pmap_phomotopy [constructor] {A : Type*} (f : punit →* A) :
|
||||
f ~* pconst punit A :=
|
||||
!phomotopy_of_is_contr_dom
|
||||
|
@ -181,7 +69,7 @@ namespace pointed
|
|||
: sigma_equiv_sigma_right (λp, eq_equiv_eq_symm _ _)
|
||||
... ≃ Σ(p : to_homotopy h = to_homotopy k),
|
||||
whisker_right (respect_pt g) (apd10 p pt) ⬝ to_homotopy_pt k = to_homotopy_pt h
|
||||
: sigma_equiv_sigma_right (λp, equiv_eq_closed_left _ (whisker_right _ !whisker_right_ap⁻¹))
|
||||
: by exact sigma_equiv_sigma_right (λp, equiv_eq_closed_left _ (whisker_right _ (!whisker_right_ap⁻¹ᵖ)))
|
||||
... ≃ Σ(p : to_homotopy h ~ to_homotopy k),
|
||||
whisker_right (respect_pt g) (p pt) ⬝ to_homotopy_pt k = to_homotopy_pt h
|
||||
: sigma_equiv_sigma_left' eq_equiv_homotopy
|
||||
|
@ -974,15 +862,42 @@ namespace pointed
|
|||
definition pequiv_eq {f g : A ≃* B} (H : f ~* g) : f = g :=
|
||||
(pequiv_eq_equiv f g)⁻¹ᵉ H
|
||||
|
||||
open algebra
|
||||
definition pequiv_of_isomorphism_of_eq {G₁ G₂ : Group} (p : G₁ = G₂) :
|
||||
pequiv_of_isomorphism (isomorphism_of_eq p) = pequiv_of_eq (ap pType_of_Group p) :=
|
||||
definition pequiv.sigma_char_equiv [constructor] (X Y : Type*) :
|
||||
(X ≃* Y) ≃ Σ(e : X ≃ Y), e pt = pt :=
|
||||
begin
|
||||
induction p,
|
||||
apply pequiv_eq,
|
||||
fapply phomotopy.mk,
|
||||
{ intro g, reflexivity },
|
||||
{ apply is_prop.elim }
|
||||
fapply equiv.MK,
|
||||
{ intro e, exact ⟨equiv_of_pequiv e, respect_pt e⟩ },
|
||||
{ intro e, exact pequiv_of_equiv e.1 e.2 },
|
||||
{ intro e, induction e with e p, fapply sigma_eq,
|
||||
apply equiv_eq, reflexivity, esimp,
|
||||
apply eq_pathover_constant_right, esimp,
|
||||
refine _ ⬝ph vrfl,
|
||||
apply ap_equiv_eq },
|
||||
{ intro e, apply pequiv_eq, fapply phomotopy.mk, intro x, reflexivity,
|
||||
refine !idp_con ⬝ _, reflexivity },
|
||||
end
|
||||
|
||||
definition pequiv.sigma_char_pmap [constructor] (X Y : Type*) :
|
||||
(X ≃* Y) ≃ Σ(f : X →* Y), is_equiv f :=
|
||||
begin
|
||||
fapply equiv.MK,
|
||||
{ intro e, exact ⟨ pequiv.to_pmap e , pequiv.to_is_equiv e ⟩ },
|
||||
{ intro w, exact pequiv_of_pmap w.1 w.2 },
|
||||
{ intro w, induction w with f p, fapply sigma_eq,
|
||||
{ reflexivity }, { apply is_prop.elimo } },
|
||||
{ intro e, apply pequiv_eq, fapply phomotopy.mk,
|
||||
{ intro x, reflexivity },
|
||||
{ refine !idp_con ⬝ _, reflexivity } }
|
||||
end
|
||||
|
||||
definition pType_eq_equiv (X Y : Type*) : (X = Y) ≃ (X ≃* Y) :=
|
||||
begin
|
||||
refine eq_equiv_fn_eq pType.sigma_char X Y ⬝e !sigma_eq_equiv ⬝e _, esimp,
|
||||
transitivity Σ(p : X = Y), cast p pt = pt,
|
||||
apply sigma_equiv_sigma_right, intro p, apply pathover_equiv_tr_eq,
|
||||
transitivity Σ(e : X ≃ Y), e pt = pt,
|
||||
refine sigma_equiv_sigma (eq_equiv_equiv X Y) (λp, equiv.rfl),
|
||||
exact (pequiv.sigma_char_equiv X Y)⁻¹ᵉ
|
||||
end
|
||||
|
||||
end pointed
|
||||
|
|
|
@ -120,6 +120,10 @@ namespace sigma
|
|||
sigma_eq (p1 ⬝ p2) (q1 ⬝o q2) = sigma_eq p1 q1 ⬝ sigma_eq p2 q2 :=
|
||||
by induction u; induction v; induction w; apply dpair_eq_dpair_con
|
||||
|
||||
definition dpair_eq_dpair_inv {A : Type} {B : A → Type} {a a' : A} {b : B a} {b' : B a'} (p : a = a')
|
||||
(q : b =[p] b') : (dpair_eq_dpair p q)⁻¹ = dpair_eq_dpair p⁻¹ q⁻¹ᵒ :=
|
||||
begin induction q, reflexivity end
|
||||
|
||||
local attribute dpair_eq_dpair [reducible]
|
||||
definition dpair_eq_dpair_con_idp (p : a = a') (q : b =[p] b') :
|
||||
dpair_eq_dpair p q = dpair_eq_dpair p !pathover_tr ⬝
|
||||
|
@ -466,23 +470,21 @@ namespace sigma
|
|||
|
||||
/- *** The negative universal property. -/
|
||||
|
||||
protected definition coind_unc (fg : Σ(f : Πa, B a), Πa, C a (f a)) (a : A)
|
||||
protected definition coind_unc [constructor] (fg : Σ(f : Πa, B a), Πa, C a (f a)) (a : A)
|
||||
: Σ(b : B a), C a b :=
|
||||
⟨fg.1 a, fg.2 a⟩
|
||||
|
||||
protected definition coind (f : Π a, B a) (g : Π a, C a (f a)) (a : A) : Σ(b : B a), C a b :=
|
||||
protected definition coind [constructor] (f : Π a, B a) (g : Π a, C a (f a)) (a : A) : Σ(b : B a), C a b :=
|
||||
sigma.coind_unc ⟨f, g⟩ a
|
||||
|
||||
--is the instance below dangerous?
|
||||
--in Coq this can be done without function extensionality
|
||||
definition is_equiv_coind [instance] (C : Πa, B a → Type)
|
||||
definition is_equiv_coind [constructor] (C : Πa, B a → Type)
|
||||
: is_equiv (@sigma.coind_unc _ _ C) :=
|
||||
adjointify _ (λ h, ⟨λa, (h a).1, λa, (h a).2⟩)
|
||||
(λ h, proof eq_of_homotopy (λu, !sigma.eta) qed)
|
||||
(λfg, destruct fg (λ(f : Π (a : A), B a) (g : Π (x : A), C x (f x)), proof idp qed))
|
||||
|
||||
definition sigma_pi_equiv_pi_sigma : (Σ(f : Πa, B a), Πa, C a (f a)) ≃ (Πa, Σb, C a b) :=
|
||||
equiv.mk sigma.coind_unc _
|
||||
definition sigma_pi_equiv_pi_sigma [constructor] : (Σ(f : Πa, B a), Πa, C a (f a)) ≃ (Πa, Σb, C a b) :=
|
||||
equiv.mk sigma.coind_unc !is_equiv_coind
|
||||
end
|
||||
|
||||
/- Subtypes (sigma types whose second components are props) -/
|
||||
|
|
|
@ -8,10 +8,10 @@ Properties of trunc_index, is_trunc, trunctype, trunc, and the pointed versions
|
|||
|
||||
-- NOTE: the fact that (is_trunc n A) is a mere proposition is proved in .prop_trunc
|
||||
|
||||
import .pointed ..function algebra.order types.nat.order types.unit
|
||||
import .pointed2 ..function algebra.order types.nat.order types.unit types.int.hott
|
||||
|
||||
open eq sigma sigma.ops pi function equiv trunctype
|
||||
is_equiv prod pointed nat is_trunc algebra sum unit
|
||||
is_equiv prod pointed nat is_trunc algebra unit
|
||||
|
||||
/- basic computation with ℕ₋₂, its operations and its order -/
|
||||
namespace trunc_index
|
||||
|
@ -71,6 +71,7 @@ namespace trunc_index
|
|||
le.step (trunc_index.le.tr_refl n)
|
||||
|
||||
-- the order is total
|
||||
open sum
|
||||
protected theorem le_sum_le (n m : ℕ₋₂) : n ≤ m ⊎ m ≤ n :=
|
||||
begin
|
||||
induction m with m IH,
|
||||
|
@ -185,6 +186,23 @@ namespace trunc_index
|
|||
definition of_nat_add_two (n : ℕ₋₂) : of_nat (add_two n) = n.+2 :=
|
||||
begin induction n with n IH, reflexivity, exact ap succ IH end
|
||||
|
||||
lemma minus_two_add_plus_two (n : ℕ₋₂) : -2+2+n = n :=
|
||||
by induction n with n p; reflexivity; exact ap succ p
|
||||
|
||||
lemma add_plus_two_comm (n k : ℕ₋₂) : n +2+ k = k +2+ n :=
|
||||
begin
|
||||
induction n with n IH,
|
||||
{ exact minus_two_add_plus_two k },
|
||||
{ exact !succ_add_plus_two ⬝ ap succ IH}
|
||||
end
|
||||
|
||||
lemma sub_one_add_plus_two_sub_one (n m : ℕ) : n.-1 +2+ m.-1 = of_nat (n + m) :=
|
||||
begin
|
||||
induction m with m IH,
|
||||
{ reflexivity },
|
||||
{ exact ap succ IH }
|
||||
end
|
||||
|
||||
definition of_nat_le_of_nat {n m : ℕ} (H : n ≤ m) : (of_nat n ≤ of_nat m) :=
|
||||
begin
|
||||
induction H with m H IH,
|
||||
|
@ -218,6 +236,13 @@ namespace trunc_index
|
|||
exact le_of_succ_le_succ (le_of_succ_le_succ H)
|
||||
end
|
||||
|
||||
protected definition of_nat_monotone {n k : ℕ} : n ≤ k → of_nat n ≤ of_nat k :=
|
||||
begin
|
||||
intro H, induction H with k H K,
|
||||
{ apply le.tr_refl },
|
||||
{ apply le.step K }
|
||||
end
|
||||
|
||||
protected theorem succ_le_of_not_le {n m : ℕ₋₂} (H : ¬ n ≤ m) : m.+1 ≤ n :=
|
||||
begin
|
||||
cases (le.total n m) with H2 H2,
|
||||
|
@ -238,6 +263,15 @@ namespace trunc_index
|
|||
right, intro H2, apply H, exact le_of_succ_le_succ H2
|
||||
end
|
||||
|
||||
protected definition pred [unfold 1] (n : ℕ₋₂) : ℕ₋₂ :=
|
||||
begin cases n with n, exact -2, exact n end
|
||||
|
||||
definition trunc_index_equiv_nat [constructor] : ℕ₋₂ ≃ ℕ :=
|
||||
equiv.MK add_two sub_two add_two_sub_two sub_two_add_two
|
||||
|
||||
definition is_set_trunc_index [instance] : is_set ℕ₋₂ :=
|
||||
is_trunc_equiv_closed_rev 0 trunc_index_equiv_nat
|
||||
|
||||
end trunc_index open trunc_index
|
||||
|
||||
namespace is_trunc
|
||||
|
@ -447,8 +481,7 @@ namespace is_trunc
|
|||
apply iff.mp !is_trunc_iff_is_contr_loop H
|
||||
end
|
||||
|
||||
-- rename to is_trunc_loopn_of_is_trunc
|
||||
theorem is_trunc_loop_of_is_trunc (n : ℕ₋₂) (k : ℕ) (A : Type*) [H : is_trunc n A] :
|
||||
theorem is_trunc_loopn_of_is_trunc (n : ℕ₋₂) (k : ℕ) (A : Type*) [H : is_trunc n A] :
|
||||
is_trunc n (Ω[k] A) :=
|
||||
begin
|
||||
induction k with k IH,
|
||||
|
@ -463,9 +496,20 @@ namespace is_trunc
|
|||
apply is_trunc_eq, apply IH, rewrite [succ_add_nat, add_nat_succ at H], exact H
|
||||
end
|
||||
|
||||
lemma is_trunc_loopn_nat (n m : ℕ) (A : Type*) [H : is_trunc (n + m) A] :
|
||||
is_trunc n (Ω[m] A) :=
|
||||
@is_trunc_loopn n m A (transport (λk, is_trunc k _) (of_nat_add_of_nat n m)⁻¹ H)
|
||||
|
||||
definition is_set_loopn (n : ℕ) (A : Type*) [is_trunc n A] : is_set (Ω[n] A) :=
|
||||
have is_trunc (0+[ℕ₋₂]n) A, by rewrite [trunc_index.zero_add]; exact _,
|
||||
is_trunc_loopn 0 n A
|
||||
have is_trunc (0+n) A, by rewrite [zero_add]; exact _,
|
||||
is_trunc_loopn_nat 0 n A
|
||||
|
||||
lemma is_trunc_loop_nat (n : ℕ) (A : Type*) [H : is_trunc (n + 1) A] :
|
||||
is_trunc n (Ω A) :=
|
||||
is_trunc_loop A n
|
||||
|
||||
definition is_trunc_of_eq {n m : ℕ₋₂} (p : n = m) {A : Type} (H : is_trunc n A) : is_trunc m A :=
|
||||
transport (λk, is_trunc k A) p H
|
||||
|
||||
definition pequiv_punit_of_is_contr [constructor] (A : Type*) (H : is_contr A) : A ≃* punit :=
|
||||
pequiv_of_equiv (equiv_unit_of_is_contr A) (@is_prop.elim unit _ _ _)
|
||||
|
@ -623,8 +667,8 @@ namespace trunc
|
|||
begin
|
||||
note H2 := is_trunc_of_le (trunc n A) H,
|
||||
fapply equiv.MK,
|
||||
{ intro x, induction x with x, induction x with x, exact tr x},
|
||||
{ intro x, induction x with x, exact tr (tr x)},
|
||||
{ intro x, induction x with x, induction x with x, exact tr x },
|
||||
{ exact trunc_functor n tr },
|
||||
{ intro x, induction x with x, reflexivity},
|
||||
{ intro x, induction x with x, induction x with x, reflexivity}
|
||||
end
|
||||
|
@ -663,6 +707,17 @@ namespace trunc
|
|||
induction x with x, esimp, exact ap tr (p x)
|
||||
end
|
||||
|
||||
section hsquare
|
||||
variables {A₀₀ A₂₀ A₄₀ A₀₂ A₂₂ A₄₂ A₀₄ A₂₄ A₄₄ : Type}
|
||||
{f₁₀ : A₀₀ → A₂₀} {f₀₁ : A₀₀ → A₀₂} {f₂₁ : A₂₀ → A₂₂} {f₁₂ : A₀₂ → A₂₂}
|
||||
|
||||
definition trunc_functor_hsquare (n : ℕ₋₂) (h : hsquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
hsquare (trunc_functor n f₁₀) (trunc_functor n f₁₂)
|
||||
(trunc_functor n f₀₁) (trunc_functor n f₂₁) :=
|
||||
λa, !trunc_functor_compose⁻¹ ⬝ trunc_functor_homotopy n h a ⬝ !trunc_functor_compose
|
||||
|
||||
end hsquare
|
||||
|
||||
definition trunc_functor_homotopy_of_le {n k : ℕ₋₂} {A B : Type} (f : A → B) (H : n ≤ k) :
|
||||
to_fun (trunc_trunc_equiv_left B H) ∘
|
||||
trunc_functor n (trunc_functor k f) ∘
|
||||
|
@ -693,6 +748,13 @@ namespace trunc
|
|||
definition ptrunc [constructor] (n : ℕ₋₂) (X : Type*) : n-Type* :=
|
||||
ptrunctype.mk (trunc n X) _ (tr pt)
|
||||
|
||||
definition is_trunc_ptrunc_of_is_trunc [instance] [priority 500] (A : Type*)
|
||||
(n m : ℕ₋₂) [H : is_trunc n A] : is_trunc n (ptrunc m A) :=
|
||||
is_trunc_trunc_of_is_trunc A n m
|
||||
|
||||
definition is_contr_ptrunc_minus_one (A : Type*) : is_contr (ptrunc -1 A) :=
|
||||
is_contr_of_inhabited_prop pt
|
||||
|
||||
/- pointed maps involving ptrunc -/
|
||||
definition ptrunc_functor [constructor] {X Y : Type*} (n : ℕ₋₂) (f : X →* Y)
|
||||
: ptrunc n X →* ptrunc n Y :=
|
||||
|
@ -708,6 +770,11 @@ namespace trunc
|
|||
ptrunc n X →* Y :=
|
||||
pmap.mk (trunc.elim f) (respect_pt f)
|
||||
|
||||
definition ptrunc_functor_le {k l : ℕ₋₂} (p : l ≤ k) (X : Type*)
|
||||
: ptrunc k X →* ptrunc l X :=
|
||||
have is_trunc k (ptrunc l X), from is_trunc_of_le _ p,
|
||||
ptrunc.elim _ (ptr l X)
|
||||
|
||||
/- pointed equivalences involving ptrunc -/
|
||||
definition ptrunc_pequiv_ptrunc [constructor] (n : ℕ₋₂) {X Y : Type*} (H : X ≃* Y)
|
||||
: ptrunc n X ≃* ptrunc n Y :=
|
||||
|
@ -735,6 +802,10 @@ namespace trunc
|
|||
: ptrunc n (ptrunc m A) ≃* ptrunc m (ptrunc n A) :=
|
||||
pequiv_of_equiv (trunc_trunc_equiv_trunc_trunc n m A) idp
|
||||
|
||||
definition ptrunc_change_index {k l : ℕ₋₂} (p : k = l) (X : Type*)
|
||||
: ptrunc k X ≃* ptrunc l X :=
|
||||
pequiv_ap (λ n, ptrunc n X) p
|
||||
|
||||
definition loop_ptrunc_pequiv [constructor] (n : ℕ₋₂) (A : Type*) :
|
||||
Ω (ptrunc (n+1) A) ≃* ptrunc n (Ω A) :=
|
||||
pequiv_of_equiv !tr_eq_tr_equiv idp
|
||||
|
@ -756,6 +827,10 @@ namespace trunc
|
|||
exact loopn_pequiv_loopn k (pequiv_of_eq (ap (λn, ptrunc n A) !succ_add_nat⁻¹)) }
|
||||
end
|
||||
|
||||
definition loopn_ptrunc_pequiv_nat (n k : ℕ) (A : Type*) :
|
||||
Ω[k] (ptrunc (n + k) A) ≃* ptrunc n (Ω[k] A) :=
|
||||
loopn_pequiv_loopn k (ptrunc_change_index (of_nat_add_of_nat n k)⁻¹ A) ⬝e* loopn_ptrunc_pequiv n k A
|
||||
|
||||
definition loopn_ptrunc_pequiv_con {n : ℕ₋₂} {k : ℕ} {A : Type*}
|
||||
(p q : Ω[succ k] (ptrunc (n+succ k) A)) :
|
||||
loopn_ptrunc_pequiv n (succ k) A (p ⬝ q) =
|
||||
|
@ -870,6 +945,114 @@ namespace trunc
|
|||
{ esimp, exact !idp_con ⬝ whisker_right _ !ap_compose },
|
||||
end
|
||||
|
||||
definition ptrunc_pequiv_natural [constructor] (n : ℕ₋₂) {A B : Type*} (f : A →* B) [is_trunc n A]
|
||||
[is_trunc n B] : f ∘* ptrunc_pequiv n A ~* ptrunc_pequiv n B ∘* ptrunc_functor n f :=
|
||||
begin
|
||||
fapply phomotopy.mk,
|
||||
{ intro a, induction a with a, reflexivity },
|
||||
{ refine !idp_con ⬝ _ ⬝ !idp_con⁻¹, refine !ap_compose'⁻¹ ⬝ _, apply ap_id }
|
||||
end
|
||||
|
||||
definition ptr_natural [constructor] (n : ℕ₋₂) {A B : Type*} (f : A →* B) :
|
||||
ptrunc_functor n f ∘* ptr n A ~* ptr n B ∘* f :=
|
||||
begin
|
||||
fapply phomotopy.mk,
|
||||
{ intro a, reflexivity },
|
||||
{ reflexivity }
|
||||
end
|
||||
|
||||
definition ptrunc_elim_pcompose (n : ℕ₋₂) {A B C : Type*} (g : B →* C) (f : A →* B) [is_trunc n B]
|
||||
[is_trunc n C] : ptrunc.elim n (g ∘* f) ~* g ∘* ptrunc.elim n f :=
|
||||
begin
|
||||
fapply phomotopy.mk,
|
||||
{ intro a, induction a with a, reflexivity },
|
||||
{ apply idp_con }
|
||||
end
|
||||
|
||||
definition ptrunc_elim_ptr_phomotopy_pid (n : ℕ₋₂) (A : Type*):
|
||||
ptrunc.elim n (ptr n A) ~* pid (ptrunc n A) :=
|
||||
begin
|
||||
fapply phomotopy.mk,
|
||||
{ intro a, induction a with a, reflexivity },
|
||||
{ apply idp_con }
|
||||
end
|
||||
|
||||
section psquare
|
||||
variables {A₀₀ A₂₀ A₀₂ A₂₂ : Type*}
|
||||
{f₁₀ : A₀₀ →* A₂₀} {f₁₂ : A₀₂ →* A₂₂}
|
||||
{f₀₁ : A₀₀ →* A₀₂} {f₂₁ : A₂₀ →* A₂₂}
|
||||
|
||||
definition ptrunc_functor_psquare (n : ℕ₋₂) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) :
|
||||
psquare (ptrunc_functor n f₁₀) (ptrunc_functor n f₁₂)
|
||||
(ptrunc_functor n f₀₁) (ptrunc_functor n f₂₁) :=
|
||||
!ptrunc_functor_pcompose⁻¹* ⬝* ptrunc_functor_phomotopy n p ⬝* !ptrunc_functor_pcompose
|
||||
|
||||
end psquare
|
||||
|
||||
definition is_equiv_ptrunc_functor_ptr [constructor] (A : Type*) {n m : ℕ₋₂} (H : n ≤ m)
|
||||
: is_equiv (ptrunc_functor n (ptr m A)) :=
|
||||
to_is_equiv (trunc_trunc_equiv_left A H)⁻¹ᵉ
|
||||
|
||||
-- The following pointed equivalence can be defined more easily, but now we get the right maps definitionally
|
||||
definition ptrunc_pequiv_ptrunc_of_is_trunc {n m k : ℕ₋₂} {A : Type*}
|
||||
(H1 : n ≤ m) (H2 : n ≤ k) (H : is_trunc n A) : ptrunc m A ≃* ptrunc k A :=
|
||||
have is_trunc m A, from is_trunc_of_le A H1,
|
||||
have is_trunc k A, from is_trunc_of_le A H2,
|
||||
pequiv.MK (ptrunc.elim _ (ptr k A)) (ptrunc.elim _ (ptr m A))
|
||||
abstract begin
|
||||
refine !ptrunc_elim_pcompose⁻¹* ⬝* _,
|
||||
exact ptrunc_elim_phomotopy _ !ptrunc_elim_ptr ⬝* !ptrunc_elim_ptr_phomotopy_pid,
|
||||
end end
|
||||
abstract begin
|
||||
refine !ptrunc_elim_pcompose⁻¹* ⬝* _,
|
||||
exact ptrunc_elim_phomotopy _ !ptrunc_elim_ptr ⬝* !ptrunc_elim_ptr_phomotopy_pid,
|
||||
end end
|
||||
|
||||
/- A more general version of ptrunc_elim_phomotopy, where the proofs of truncatedness might be different -/
|
||||
definition ptrunc_elim_phomotopy2 [constructor] (k : ℕ₋₂) {A B : Type*} {f g : A →* B} (H₁ : is_trunc k B)
|
||||
(H₂ : is_trunc k B) (p : f ~* g) : @ptrunc.elim k A B H₁ f ~* @ptrunc.elim k A B H₂ g :=
|
||||
begin
|
||||
fapply phomotopy.mk,
|
||||
{ intro x, induction x with a, exact p a },
|
||||
{ exact to_homotopy_pt p }
|
||||
end
|
||||
|
||||
definition pmap_ptrunc_equiv [constructor] (n : ℕ₋₂) (A B : Type*) [H : is_trunc n B] :
|
||||
(ptrunc n A →* B) ≃ (A →* B) :=
|
||||
begin
|
||||
fapply equiv.MK,
|
||||
{ intro g, exact g ∘* ptr n A },
|
||||
{ exact ptrunc.elim n },
|
||||
{ intro f, apply eq_of_phomotopy, apply ptrunc_elim_ptr },
|
||||
{ intro g, apply eq_of_phomotopy,
|
||||
exact ptrunc_elim_pcompose n g (ptr n A) ⬝* pwhisker_left g (ptrunc_elim_ptr_phomotopy_pid n A) ⬝*
|
||||
pcompose_pid g }
|
||||
end
|
||||
|
||||
definition pmap_ptrunc_pequiv [constructor] (n : ℕ₋₂) (A B : Type*) [H : is_trunc n B] :
|
||||
ppmap (ptrunc n A) B ≃* ppmap A B :=
|
||||
pequiv_of_equiv (pmap_ptrunc_equiv n A B) (eq_of_phomotopy (pconst_pcompose (ptr n A)))
|
||||
|
||||
definition ptrunctype.sigma_char [constructor] (n : ℕ₋₂) :
|
||||
n-Type* ≃ Σ(X : Type*), is_trunc n X :=
|
||||
equiv.MK (λX, ⟨ptrunctype.to_pType X, _⟩)
|
||||
(λX, ptrunctype.mk (carrier X.1) X.2 pt)
|
||||
begin intro X, induction X with X HX, induction X, reflexivity end
|
||||
begin intro X, induction X, reflexivity end
|
||||
|
||||
definition is_embedding_ptrunctype_to_pType (n : ℕ₋₂) : is_embedding (@ptrunctype.to_pType n) :=
|
||||
begin
|
||||
intro X Y, fapply is_equiv_of_equiv_of_homotopy,
|
||||
{ exact eq_equiv_fn_eq (ptrunctype.sigma_char n) _ _ ⬝e subtype_eq_equiv _ _ },
|
||||
intro p, induction p, reflexivity
|
||||
end
|
||||
|
||||
definition ptrunctype_eq_equiv {n : ℕ₋₂} (X Y : n-Type*) : (X = Y) ≃ (X ≃* Y) :=
|
||||
equiv.mk _ (is_embedding_ptrunctype_to_pType n X Y) ⬝e pType_eq_equiv X Y
|
||||
|
||||
definition Prop_eq {P Q : Prop} (H : P ↔ Q) : P = Q :=
|
||||
tua (equiv_of_is_prop (iff.mp H) (iff.mpr H))
|
||||
|
||||
end trunc open trunc
|
||||
|
||||
/- The truncated encode-decode method -/
|
||||
|
@ -950,3 +1133,124 @@ namespace function
|
|||
-- a homotopy group.
|
||||
|
||||
end function
|
||||
|
||||
/- functions between ℤ and ℕ₋₂ -/
|
||||
namespace int
|
||||
|
||||
private definition maxm2_le.lemma₁ {n k : ℕ} : n+(1:int) + -[1+ k] ≤ n :=
|
||||
le.intro (
|
||||
calc n + 1 + -[1+ k] + k
|
||||
= n + 1 + (-(k + 1)) + k : by reflexivity
|
||||
... = n + 1 + (- 1 - k) + k : by krewrite (neg_add_rev k 1)
|
||||
... = n + 1 + (- 1 - k + k) : add.assoc
|
||||
... = n + 1 + (- 1 + -k + k) : by reflexivity
|
||||
... = n + 1 + (- 1 + (-k + k)) : add.assoc
|
||||
... = n + 1 + (- 1 + 0) : add.left_inv
|
||||
... = n + (1 + (- 1 + 0)) : add.assoc
|
||||
... = n : int.add_zero)
|
||||
|
||||
private definition maxm2_le.lemma₂ {n : ℕ} {k : ℤ} : -[1+ n] + 1 + k ≤ k :=
|
||||
le.intro (
|
||||
calc -[1+ n] + 1 + k + n
|
||||
= - (n + 1) + 1 + k + n : by reflexivity
|
||||
... = -n - 1 + 1 + k + n : by rewrite (neg_add n 1)
|
||||
... = -n + (- 1 + 1) + k + n : by krewrite (int.add_assoc (-n) (- 1) 1)
|
||||
... = -n + 0 + k + n : add.left_inv 1
|
||||
... = -n + k + n : int.add_zero
|
||||
... = k + -n + n : int.add_comm
|
||||
... = k + (-n + n) : int.add_assoc
|
||||
... = k + 0 : add.left_inv n
|
||||
... = k : int.add_zero)
|
||||
|
||||
open trunc_index
|
||||
/-
|
||||
The function from integers to truncation indices which sends
|
||||
positive numbers to themselves, and negative numbers to negative
|
||||
2. In particular -1 is sent to -2, but since we only work with
|
||||
pointed types, that doesn't matter for us -/
|
||||
definition maxm2 [unfold 1] : ℤ → ℕ₋₂ :=
|
||||
λ n, int.cases_on n trunc_index.of_nat (λk, -2)
|
||||
|
||||
-- we also need the max -1 - function
|
||||
definition maxm1 [unfold 1] : ℤ → ℕ₋₂ :=
|
||||
λ n, int.cases_on n trunc_index.of_nat (λk, -1)
|
||||
|
||||
definition maxm2_le_maxm1 (n : ℤ) : maxm2 n ≤ maxm1 n :=
|
||||
begin
|
||||
induction n with n n,
|
||||
{ exact le.tr_refl n },
|
||||
{ exact minus_two_le -1 }
|
||||
end
|
||||
|
||||
-- the is maxm1 minus 1
|
||||
definition maxm1m1 [unfold 1] : ℤ → ℕ₋₂ :=
|
||||
λ n, int.cases_on n (λ k, k.-1) (λ k, -2)
|
||||
|
||||
definition maxm1_eq_succ (n : ℤ) : maxm1 n = (maxm1m1 n).+1 :=
|
||||
begin
|
||||
induction n with n n,
|
||||
{ reflexivity },
|
||||
{ reflexivity }
|
||||
end
|
||||
|
||||
definition maxm2_le_maxm0 (n : ℤ) : maxm2 n ≤ max0 n :=
|
||||
begin
|
||||
induction n with n n,
|
||||
{ exact le.tr_refl n },
|
||||
{ exact minus_two_le 0 }
|
||||
end
|
||||
|
||||
definition max0_le_of_le {n : ℤ} {m : ℕ} (H : n ≤ of_nat m)
|
||||
: nat.le (max0 n) m :=
|
||||
begin
|
||||
induction n with n n,
|
||||
{ exact le_of_of_nat_le_of_nat H },
|
||||
{ exact nat.zero_le m }
|
||||
end
|
||||
|
||||
definition not_neg_succ_le_of_nat {n m : ℕ} : ¬m ≤ -[1+n] :=
|
||||
by cases m: exact id
|
||||
|
||||
definition maxm2_monotone {n m : ℤ} (H : n ≤ m) : maxm2 n ≤ maxm2 m :=
|
||||
begin
|
||||
induction n with n n,
|
||||
{ induction m with m m,
|
||||
{ apply of_nat_le_of_nat, exact le_of_of_nat_le_of_nat H },
|
||||
{ exfalso, exact not_neg_succ_le_of_nat H }},
|
||||
{ apply minus_two_le }
|
||||
end
|
||||
|
||||
definition sub_nat_le (n : ℤ) (m : ℕ) : n - m ≤ n :=
|
||||
le.intro !sub_add_cancel
|
||||
|
||||
definition sub_nat_lt (n : ℤ) (m : ℕ) : n - m < n + 1 :=
|
||||
add_le_add_right (sub_nat_le n m) 1
|
||||
|
||||
definition sub_one_le (n : ℤ) : n - 1 ≤ n :=
|
||||
sub_nat_le n 1
|
||||
|
||||
definition le_add_nat (n : ℤ) (m : ℕ) : n ≤ n + m :=
|
||||
le.intro rfl
|
||||
|
||||
definition le_add_one (n : ℤ) : n ≤ n + 1:=
|
||||
le_add_nat n 1
|
||||
|
||||
open trunc_index
|
||||
|
||||
definition maxm2_le (n k : ℤ) : maxm2 (n+1+k) ≤ (maxm1m1 n).+1+2+(maxm1m1 k) :=
|
||||
begin
|
||||
rewrite [-(maxm1_eq_succ n)],
|
||||
induction n with n n,
|
||||
{ induction k with k k,
|
||||
{ induction k with k IH,
|
||||
{ apply le.tr_refl },
|
||||
{ exact succ_le_succ IH } },
|
||||
{ exact trunc_index.le_trans (maxm2_monotone maxm2_le.lemma₁)
|
||||
(maxm2_le_maxm1 n) } },
|
||||
{ krewrite (add_plus_two_comm -1 (maxm1m1 k)),
|
||||
rewrite [-(maxm1_eq_succ k)],
|
||||
exact trunc_index.le_trans (maxm2_monotone maxm2_le.lemma₂)
|
||||
(maxm2_le_maxm1 k) }
|
||||
end
|
||||
|
||||
end int open int
|
||||
|
|
Loading…
Reference in a new issue