feat(circle): add missing facts that the circle is 1-truncated and 0-connected
This commit is contained in:
parent
bac6d99cc7
commit
c64e5a114c
1 changed files with 19 additions and 2 deletions
|
@ -8,9 +8,9 @@ Declaration of the circle
|
|||
|
||||
import .sphere
|
||||
import types.bool types.int.hott types.equiv
|
||||
import algebra.homotopy_group algebra.hott
|
||||
import algebra.homotopy_group algebra.hott .connectedness
|
||||
|
||||
open eq susp bool sphere_index is_equiv equiv equiv.ops is_trunc pi algebra
|
||||
open eq susp bool sphere_index is_equiv equiv equiv.ops is_trunc pi algebra homotopy
|
||||
|
||||
definition circle : Type₀ := sphere 1
|
||||
|
||||
|
@ -269,6 +269,23 @@ namespace circle
|
|||
induction H', reflexivity}
|
||||
end
|
||||
|
||||
definition is_trunc_circle [instance] : is_trunc 1 S¹ :=
|
||||
begin
|
||||
apply is_trunc_succ_of_is_trunc_loop,
|
||||
{ exact unit.star},
|
||||
{ intro x, apply is_trunc_equiv_closed_rev, apply eq_equiv_Z}
|
||||
end
|
||||
|
||||
definition is_conn_circle [instance] : is_conn 0 S¹ :=
|
||||
begin
|
||||
fapply is_contr.mk,
|
||||
{ exact tr base},
|
||||
{ intro x, induction x with x,
|
||||
induction x,
|
||||
{ reflexivity},
|
||||
{ apply is_prop.elimo}}
|
||||
end
|
||||
|
||||
definition circle_mul [reducible] (x y : S¹) : S¹ :=
|
||||
begin
|
||||
induction x,
|
||||
|
|
Loading…
Reference in a new issue