refactor(library/data/list/perm): use by_cases instead of dependent-if
This commit is contained in:
parent
9306830d8c
commit
c6a35e718d
1 changed files with 44 additions and 39 deletions
|
@ -155,33 +155,37 @@ assume p, calc
|
|||
... = l₁++(l₂++[a]) : append.assoc
|
||||
... ~ l₁++(a::l₂) : perm_app_right l₁ (symm (perm_cons_app a l₂))
|
||||
|
||||
open decidable
|
||||
theorem perm_erase [H : decidable_eq A] {a : A} : ∀ {l : list A}, a ∈ l → l ~ a::(erase a l)
|
||||
| [] h := absurd h !not_mem_nil
|
||||
| (x::t) h :=
|
||||
if Heq : a = x then
|
||||
by rewrite [Heq, erase_cons_head]; exact !perm.refl
|
||||
else
|
||||
have aint : a ∈ t, from mem_of_ne_of_mem Heq h,
|
||||
by_cases
|
||||
(assume aeqx : a = x, by rewrite [aeqx, erase_cons_head]; exact !perm.refl)
|
||||
(assume naeqx : a ≠ x,
|
||||
have aint : a ∈ t, from mem_of_ne_of_mem naeqx h,
|
||||
have aux : t ~ a :: erase a t, from perm_erase aint,
|
||||
calc x::t ~ x::a::(erase a t) : skip x aux
|
||||
... ~ a::x::(erase a t) : swap
|
||||
... = a::(erase a (x::t)) : by rewrite [!erase_cons_tail Heq]
|
||||
... = a::(erase a (x::t)) : by rewrite [!erase_cons_tail naeqx])
|
||||
|
||||
theorem erase_perm_erase_of_perm [H : decidable_eq A] (a : A) {l₁ l₂ : list A} : l₁ ~ l₂ → erase a l₁ ~ erase a l₂ :=
|
||||
assume p, perm.induction_on p
|
||||
nil
|
||||
(λ x t₁ t₂ p r,
|
||||
if Hax : a = x
|
||||
then by rewrite [Hax, *erase_cons_head]; exact p
|
||||
else by rewrite [*erase_cons_tail _ Hax]; exact (skip x r))
|
||||
by_cases
|
||||
(assume aeqx : a = x, by rewrite [aeqx, *erase_cons_head]; exact p)
|
||||
(assume naeqx : a ≠ x, by rewrite [*erase_cons_tail _ naeqx]; exact (skip x r)))
|
||||
(λ x y l,
|
||||
if Hax : a = x
|
||||
then (if Hay : a = y
|
||||
then by rewrite [-Hax, -Hay]; exact !perm.refl
|
||||
else by rewrite [-Hax, erase_cons_tail _ Hay, *erase_cons_head]; exact !perm.refl)
|
||||
else (if Hay : a = y
|
||||
then by rewrite [-Hay, erase_cons_tail _ Hax, *erase_cons_head]; exact !perm.refl
|
||||
else by rewrite[erase_cons_tail _ Hax, *erase_cons_tail _ Hay, erase_cons_tail _ Hax]; exact !swap))
|
||||
by_cases
|
||||
(assume aeqx : a = x,
|
||||
by_cases
|
||||
(assume aeqy : a = y, by rewrite [-aeqx, -aeqy]; exact !perm.refl)
|
||||
(assume naeqy : a ≠ y, by rewrite [-aeqx, erase_cons_tail _ naeqy, *erase_cons_head]; exact !perm.refl))
|
||||
(assume naeqx : a ≠ x,
|
||||
by_cases
|
||||
(assume aeqy : a = y, by rewrite [-aeqy, erase_cons_tail _ naeqx, *erase_cons_head]; exact !perm.refl)
|
||||
(assume naeqy : a ≠ y, by rewrite[erase_cons_tail _ naeqx, *erase_cons_tail _ naeqy, erase_cons_tail _ naeqx];
|
||||
exact !swap)))
|
||||
(λ l₁ l₂ l₃ p₁ p₂ r₁ r₂, trans r₁ r₂)
|
||||
|
||||
theorem perm_induction_on {P : list A → list A → Prop} {l₁ l₂ : list A} (p : l₁ ~ l₂)
|
||||
|
@ -226,7 +230,8 @@ definition decidable_perm_aux : ∀ (n : nat) (l₁ l₂ : list A), length l₁
|
|||
assert l₂n : l₂ = [], from eq_nil_of_length_eq_zero H₂,
|
||||
by rewrite [l₁n, l₂n]; exact (inl perm.nil)
|
||||
| (n+1) (x::t₁) l₂ H₁ H₂ :=
|
||||
if xinl₂ : x ∈ l₂ then
|
||||
by_cases
|
||||
(assume xinl₂ : x ∈ l₂,
|
||||
let t₂ : list A := erase x l₂ in
|
||||
have len_t₁ : length t₁ = n, from nat.no_confusion H₁ (λ e, e),
|
||||
assert len_t₂_aux : length t₂ = pred (length l₂), from length_erase_of_mem x l₂ xinl₂,
|
||||
|
@ -239,16 +244,16 @@ definition decidable_perm_aux : ∀ (n : nat) (l₁ l₂ : list A), length l₁
|
|||
assert p₁ : erase x (x::t₁) ~ erase x l₂, from erase_perm_erase_of_perm x p,
|
||||
have p₂ : t₁ ~ erase x l₂, by rewrite [erase_cons_head at p₁]; exact p₁,
|
||||
absurd p₂ np)
|
||||
end
|
||||
else
|
||||
inr (λ p : x::t₁ ~ l₂, absurd (mem_perm x (x::t₁) l₂ p !mem_cons) xinl₂)
|
||||
end)
|
||||
(assume nxinl₂ : x ∉ l₂,
|
||||
inr (λ p : x::t₁ ~ l₂, absurd (mem_perm x (x::t₁) l₂ p !mem_cons) nxinl₂))
|
||||
|
||||
definition decidable_perm [instance] : ∀ (l₁ l₂ : list A), decidable (l₁ ~ l₂) :=
|
||||
λ l₁ l₂,
|
||||
if Hl : length l₁ = length l₂ then
|
||||
decidable_perm_aux (length l₂) l₁ l₂ Hl rfl
|
||||
else
|
||||
inr (λ p : l₁ ~ l₂, absurd (length_eq_length_of_perm p) Hl)
|
||||
by_cases
|
||||
(assume eql : length l₁ = length l₂,
|
||||
decidable_perm_aux (length l₂) l₁ l₂ eql rfl)
|
||||
(assume neql : length l₁ ≠ length l₂,
|
||||
inr (λ p : l₁ ~ l₂, absurd (length_eq_length_of_perm p) neql))
|
||||
end dec
|
||||
|
||||
end perm
|
||||
|
|
Loading…
Reference in a new issue