feat(library/data/nat/sub): add two extra theorems
This commit is contained in:
parent
11c9bb4626
commit
c73c1dbb63
1 changed files with 7 additions and 0 deletions
|
@ -148,6 +148,13 @@ calc
|
||||||
... = n * m - k * n : {!mul.comm}
|
... = n * m - k * n : {!mul.comm}
|
||||||
... = n * m - n * k : {!mul.comm}
|
... = n * m - n * k : {!mul.comm}
|
||||||
|
|
||||||
|
theorem mul_self_sub_mul_self_eq (a b : nat) : a * a - b * b = (a + b) * (a - b) :=
|
||||||
|
by rewrite [mul_sub_left_distrib, *mul.right_distrib, mul.comm b a, add.comm (a*a) (a*b), add_sub_add_left]
|
||||||
|
|
||||||
|
theorem succ_mul_succ_eq (a : nat) : succ a * succ a = a*a + a + a + 1 :=
|
||||||
|
calc succ a * succ a = (a+1)*(a+1) : by rewrite [add_one]
|
||||||
|
... = a*a + a + a + 1 : by rewrite [mul.right_distrib, mul.left_distrib, one_mul, mul_one]
|
||||||
|
|
||||||
/- interaction with inequalities -/
|
/- interaction with inequalities -/
|
||||||
|
|
||||||
theorem succ_sub {m n : ℕ} : m ≥ n → succ m - n = succ (m - n) :=
|
theorem succ_sub {m n : ℕ} : m ≥ n → succ m - n = succ (m - n) :=
|
||||||
|
|
Loading…
Reference in a new issue