feat(library/app_builder): add lift_from_eq

This commit is contained in:
Leonardo de Moura 2015-11-20 10:27:58 -08:00
parent f6ba746b03
commit c76b04719c
2 changed files with 24 additions and 0 deletions

View file

@ -7,6 +7,7 @@ Author: Leonardo de Moura
#include "util/scoped_map.h" #include "util/scoped_map.h"
#include "util/name_map.h" #include "util/name_map.h"
#include "kernel/instantiate.h" #include "kernel/instantiate.h"
#include "kernel/abstract.h"
#include "library/match.h" #include "library/match.h"
#include "library/constants.h" #include "library/constants.h"
#include "library/app_builder.h" #include "library/app_builder.h"
@ -424,6 +425,21 @@ struct app_builder::imp {
} }
} }
expr lift_from_eq(name const & R, expr const & H) {
if (R == get_eq_name())
return H;
expr H_type = m_ctx->relaxed_whnf(m_ctx->infer(H));
// H_type : @eq A a b
expr const & a = app_arg(app_fn(H_type));
expr const & A = app_arg(app_fn(app_fn(H_type)));
expr x = m_ctx->mk_tmp_local(A);
// motive := fun x : A, a ~ x
expr motive = Fun(x, mk_rel(R, a, x));
// minor : a ~ a
expr minor = mk_refl(R, a);
return mk_eq_rec(motive, minor, H);
}
expr mk_eq_rec(expr const & motive, expr const & H1, expr const & H2) { expr mk_eq_rec(expr const & motive, expr const & H1, expr const & H2) {
expr p = m_ctx->whnf(m_ctx->infer(H2)); expr p = m_ctx->whnf(m_ctx->infer(H2));
expr lhs, rhs; expr lhs, rhs;
@ -642,6 +658,10 @@ expr app_builder::mk_congr(expr const & H1, expr const & H2) {
return m_ptr->mk_congr(H1, H2); return m_ptr->mk_congr(H1, H2);
} }
expr app_builder::lift_from_eq(name const & R, expr const & H) {
return m_ptr->lift_from_eq(R, H);
}
expr app_builder::mk_iff_false_intro(expr const & H) { expr app_builder::mk_iff_false_intro(expr const & H) {
return m_ptr->mk_iff_false_intro(H); return m_ptr->mk_iff_false_intro(H);
} }

View file

@ -115,6 +115,10 @@ public:
expr mk_congr_fun(expr const & H, expr const & a); expr mk_congr_fun(expr const & H, expr const & a);
expr mk_congr(expr const & H1, expr const & H2); expr mk_congr(expr const & H1, expr const & H2);
/** \brief Given a reflexive relation R, and a proof H : a = b,
build a proof for (R a b) */
expr lift_from_eq(name const & R, expr const & H);
/** \brief not p -> (p <-> false) */ /** \brief not p -> (p <-> false) */
expr mk_iff_false_intro(expr const & H); expr mk_iff_false_intro(expr const & H);
/** \brief p -> (p <-> true) */ /** \brief p -> (p <-> true) */