generalize many results about pointed homotopies of nondependent maps to dependent maps
This commit is contained in:
parent
1a26d405ef
commit
c8477d28ba
6 changed files with 164 additions and 93 deletions
|
@ -285,6 +285,25 @@ namespace eq
|
|||
induction p using homotopy.rec_on, induction q, exact H
|
||||
end
|
||||
|
||||
definition homotopy.rec_idp [recursor] {A : Type} {P : A → Type} {f : Πa, P a}
|
||||
(Q : Π{g}, (f ~ g) → Type) (H : Q (homotopy.refl f)) {g : Π x, P x} (p : f ~ g) : Q p :=
|
||||
homotopy.rec_on_idp p H
|
||||
|
||||
definition homotopy_rec_on_apd10 {A : Type} {P : A → Type} {f g : Πa, P a}
|
||||
(Q : f ~ g → Type) (H : Π(q : f = g), Q (apd10 q)) (p : f = g) :
|
||||
homotopy.rec_on (apd10 p) H = H p :=
|
||||
begin
|
||||
unfold [homotopy.rec_on],
|
||||
refine ap (λp, p ▸ _) !adj ⬝ _,
|
||||
refine !tr_compose⁻¹ ⬝ _,
|
||||
apply apdt
|
||||
end
|
||||
|
||||
definition homotopy_rec_idp_refl {A : Type} {P : A → Type} {f : Πa, P a}
|
||||
(Q : Π{g}, f ~ g → Type) (H : Q homotopy.rfl) :
|
||||
homotopy.rec_idp @Q H homotopy.rfl = H :=
|
||||
!homotopy_rec_on_apd10
|
||||
|
||||
definition eq_of_homotopy_inv {f g : Π x, P x} (H : f ~ g)
|
||||
: eq_of_homotopy (λx, (H x)⁻¹) = (eq_of_homotopy H)⁻¹ :=
|
||||
begin
|
||||
|
|
|
@ -82,6 +82,9 @@ namespace eq
|
|||
definition change_path [unfold 9] (q : p = p') (r : b =[p] b₂) : b =[p'] b₂ :=
|
||||
q ▸ r
|
||||
|
||||
definition change_path_idp [unfold_full] (r : b =[p] b₂) : change_path idp r = r :=
|
||||
by reflexivity
|
||||
|
||||
-- infix ` ⬝ ` := concato
|
||||
infix ` ⬝o `:72 := concato
|
||||
infix ` ⬝op `:73 := concato_eq
|
||||
|
@ -103,25 +106,25 @@ namespace eq
|
|||
|
||||
/- Some of the theorems analogous to theorems for = in init.path -/
|
||||
|
||||
definition cono_idpo (r : b =[p] b₂) : r ⬝o idpo =[con_idp p] r :=
|
||||
pathover.rec_on r idpo
|
||||
definition cono_idpo (r : b =[p] b₂) : r ⬝o idpo = r :=
|
||||
by reflexivity
|
||||
|
||||
definition idpo_cono (r : b =[p] b₂) : idpo ⬝o r =[idp_con p] r :=
|
||||
pathover.rec_on r idpo
|
||||
by induction r; constructor
|
||||
|
||||
definition cono.assoc' (r : b =[p] b₂) (r₂ : b₂ =[p₂] b₃) (r₃ : b₃ =[p₃] b₄) :
|
||||
r ⬝o (r₂ ⬝o r₃) =[!con.assoc'] (r ⬝o r₂) ⬝o r₃ :=
|
||||
pathover.rec_on r₃ (pathover.rec_on r₂ (pathover.rec_on r idpo))
|
||||
by induction r₃; constructor
|
||||
|
||||
definition cono.assoc (r : b =[p] b₂) (r₂ : b₂ =[p₂] b₃) (r₃ : b₃ =[p₃] b₄) :
|
||||
(r ⬝o r₂) ⬝o r₃ =[!con.assoc] r ⬝o (r₂ ⬝o r₃) :=
|
||||
pathover.rec_on r₃ (pathover.rec_on r₂ (pathover.rec_on r idpo))
|
||||
by induction r₃; constructor
|
||||
|
||||
definition cono.right_inv (r : b =[p] b₂) : r ⬝o r⁻¹ᵒ =[!con.right_inv] idpo :=
|
||||
pathover.rec_on r idpo
|
||||
by induction r; constructor
|
||||
|
||||
definition cono.left_inv (r : b =[p] b₂) : r⁻¹ᵒ ⬝o r =[!con.left_inv] idpo :=
|
||||
pathover.rec_on r idpo
|
||||
by induction r; constructor
|
||||
|
||||
definition eq_of_pathover {a' a₂' : A'} (q : a' =[p] a₂') : a' = a₂' :=
|
||||
by cases q;reflexivity
|
||||
|
@ -159,6 +162,11 @@ namespace eq
|
|||
eq_of_pathover_idp (pathover_of_eq (idpath x) p) = p :=
|
||||
by induction p; reflexivity
|
||||
|
||||
variable (B)
|
||||
definition idpo_concato_eq (r : b = b') : eq_of_pathover_idp (@idpo A B a b ⬝op r) = r :=
|
||||
by induction r; reflexivity
|
||||
variable {B}
|
||||
|
||||
-- definition pathover_idp (b : B a) (b' : B a) : b =[idpath a] b' ≃ b = b' :=
|
||||
-- pathover_equiv_tr_eq idp b b'
|
||||
|
||||
|
@ -245,6 +253,9 @@ namespace eq
|
|||
definition apd [unfold 6] (f : Πa, B a) (p : a = a₂) : f a =[p] f a₂ :=
|
||||
by induction p; constructor
|
||||
|
||||
definition apd_idp [unfold_full] (f : Πa, B a) : apd f idp = @idpo A B a (f a) :=
|
||||
by reflexivity
|
||||
|
||||
definition apo [unfold 12] {f : A → A'} (g : Πa, B a → B'' (f a)) (q : b =[p] b₂) :
|
||||
g a b =[p] g a₂ b₂ :=
|
||||
by induction q; constructor
|
||||
|
@ -388,19 +399,19 @@ namespace eq
|
|||
|
||||
definition cono.right_inv_eq (q : b = b') :
|
||||
pathover_idp_of_eq q ⬝op q⁻¹ = (idpo : b =[refl a] b) :=
|
||||
by induction q;constructor
|
||||
by induction q; constructor
|
||||
|
||||
definition cono.right_inv_eq' (q : b = b') :
|
||||
q ⬝po (pathover_idp_of_eq q⁻¹) = (idpo : b =[refl a] b) :=
|
||||
by induction q;constructor
|
||||
by induction q; constructor
|
||||
|
||||
definition cono.left_inv_eq (q : b = b') :
|
||||
pathover_idp_of_eq q⁻¹ ⬝op q = (idpo : b' =[refl a] b') :=
|
||||
by induction q;constructor
|
||||
by induction q; constructor
|
||||
|
||||
definition cono.left_inv_eq' (q : b = b') :
|
||||
q⁻¹ ⬝po pathover_idp_of_eq q = (idpo : b' =[refl a] b') :=
|
||||
by induction q;constructor
|
||||
by induction q; constructor
|
||||
|
||||
definition pathover_of_fn_pathover_fn (f : Π{a}, B a ≃ B' a) (r : f b =[p] f b₂) : b =[p] b₂ :=
|
||||
(left_inv f b)⁻¹ ⬝po apo (λa, f⁻¹ᵉ) r ⬝op left_inv f b₂
|
||||
|
|
|
@ -88,31 +88,26 @@ structure ppi {A : Type*} (P : A → Type) (x₀ : P pt) :=
|
|||
(to_fun : Π a : A, P a)
|
||||
(resp_pt : to_fun (Point A) = x₀)
|
||||
|
||||
definition ppi_const [constructor] {A : Type*} (P : A → Type*) : ppi P pt :=
|
||||
ppi.mk (λa, pt) idp
|
||||
|
||||
definition pppi' [reducible] {A : Type*} (P : A → Type*) : Type :=
|
||||
ppi P pt
|
||||
|
||||
definition ppi_const [constructor] {A : Type*} (P : A → Type*) : pppi' P :=
|
||||
ppi.mk (λa, pt) idp
|
||||
|
||||
definition pppi [constructor] [reducible] {A : Type*} (P : A → Type*) : Type* :=
|
||||
pointed.MK (pppi' P) (ppi_const P)
|
||||
|
||||
-- do we want to make this already pointed?
|
||||
definition pmap [reducible] (A B : Type*) : Type := @pppi A (λa, B)
|
||||
|
||||
attribute ppi.to_fun [coercion]
|
||||
|
||||
infix ` →* `:28 := pmap
|
||||
notation `Π*` binders `, ` r:(scoped P, pppi P) := r
|
||||
|
||||
-- We could try to define pmap as a special case of ppi
|
||||
-- definition pmap' (A B : Type*) : Type := @pppi' A (λa, B)
|
||||
-- todo: make this already pointed?
|
||||
definition pmap [reducible] (A B : Type*) : Type := @pppi A (λa, B)
|
||||
-- structure pmap (A B : Type*) :=
|
||||
-- (to_fun : A → B)
|
||||
-- (resp_pt : to_fun (Point A) = Point B)
|
||||
|
||||
namespace pointed
|
||||
|
||||
attribute ppi.to_fun [coercion]
|
||||
|
||||
notation `map₊` := pmap
|
||||
infix ` →* `:28 := pmap
|
||||
|
||||
definition pppi.mk [constructor] [reducible] {A : Type*} {P : A → Type*} (f : Πa, P a)
|
||||
(p : f pt = pt) : pppi P :=
|
||||
|
@ -126,7 +121,7 @@ namespace pointed
|
|||
(p : f (Point A) = Point B) : A →* B :=
|
||||
pppi.mk f p
|
||||
|
||||
definition pmap.to_fun [unfold 3] [reducible] {A B : Type*} (f : A →* B) : A → B :=
|
||||
abbreviation pmap.to_fun [unfold 3] [reducible] [coercion] {A B : Type*} (f : A →* B) : A → B :=
|
||||
pppi.to_fun f
|
||||
|
||||
definition respect_pt [unfold 4] [reducible] {A : Type*} {P : A → Type} {p₀ : P pt}
|
||||
|
|
|
@ -116,10 +116,10 @@ namespace pointed
|
|||
|
||||
/- categorical properties of pointed maps -/
|
||||
|
||||
definition pid [constructor] (A : Type*) : A →* A :=
|
||||
definition pid [constructor] [refl] (A : Type*) : A →* A :=
|
||||
pmap.mk id idp
|
||||
|
||||
definition pcompose [constructor] {A B C : Type*} (g : B →* C) (f : A →* B) : A →* C :=
|
||||
definition pcompose [constructor] [trans] {A B C : Type*} (g : B →* C) (f : A →* B) : A →* C :=
|
||||
pmap.mk (λa, g (f a)) (ap g (respect_pt f) ⬝ respect_pt g)
|
||||
|
||||
infixr ` ∘* `:60 := pcompose
|
||||
|
@ -323,7 +323,7 @@ namespace pointed
|
|||
protected definition phomotopy.refl [constructor] : k ~* k :=
|
||||
phomotopy.mk homotopy.rfl !idp_con
|
||||
variable {k}
|
||||
protected definition phomotopy.rfl [constructor] [refl] : k ~* k :=
|
||||
protected definition phomotopy.rfl [reducible] [constructor] [refl] : k ~* k :=
|
||||
phomotopy.refl k
|
||||
|
||||
protected definition phomotopy.symm [constructor] [symm] (p : k ~* l) : l ~* k :=
|
||||
|
@ -447,8 +447,7 @@ namespace pointed
|
|||
definition eq_of_phomotopy (p : k ~* l) : k = l :=
|
||||
to_inv (ppi_eq_equiv k l) p
|
||||
|
||||
definition eq_of_phomotopy_refl {X Y : Type*} (f : X →* Y) :
|
||||
eq_of_phomotopy (phomotopy.refl f) = idpath f :=
|
||||
definition eq_of_phomotopy_refl (k : ppi P p₀) : eq_of_phomotopy (phomotopy.refl k) = idpath k :=
|
||||
begin
|
||||
apply to_inv_eq_of_eq, reflexivity
|
||||
end
|
||||
|
@ -480,11 +479,17 @@ namespace pointed
|
|||
induction t, exact phomotopy_of_eq_idp k ▸ q,
|
||||
end
|
||||
|
||||
definition phomotopy_rec_idp' (Q : Π ⦃k' : ppi P p₀⦄, (k ~* k') → (k = k') → Type)
|
||||
(q : Q phomotopy.rfl idp) ⦃k' : ppi P p₀⦄ (H : k ~* k') : Q H (eq_of_phomotopy H) :=
|
||||
begin
|
||||
induction H using phomotopy_rec_idp,
|
||||
exact transport (Q phomotopy.rfl) !eq_of_phomotopy_refl⁻¹ q
|
||||
end
|
||||
|
||||
attribute phomotopy.rec' [recursor]
|
||||
|
||||
definition phomotopy_rec_eq_phomotopy_of_eq {A B : Type*} {f g: A →* B}
|
||||
{Q : (f ~* g) → Type} (p : f = g) (H : Π(q : f = g), Q (phomotopy_of_eq q)) :
|
||||
phomotopy_rec_eq (phomotopy_of_eq p) H = H p :=
|
||||
definition phomotopy_rec_eq_phomotopy_of_eq {Q : (k ~* l) → Type} (p : k = l)
|
||||
(H : Π(q : k = l), Q (phomotopy_of_eq q)) : phomotopy_rec_eq (phomotopy_of_eq p) H = H p :=
|
||||
begin
|
||||
unfold phomotopy_rec_eq,
|
||||
refine ap (λp, p ▸ _) !adj ⬝ _,
|
||||
|
@ -492,11 +497,33 @@ namespace pointed
|
|||
apply apdt
|
||||
end
|
||||
|
||||
definition phomotopy_rec_idp_refl {A B : Type*} (f : A →* B)
|
||||
{Q : Π{g}, (f ~* g) → Type} (H : Q (phomotopy.refl f)) :
|
||||
definition phomotopy_rec_idp_refl {Q : Π{l}, (k ~* l) → Type} (H : Q (phomotopy.refl k)) :
|
||||
phomotopy_rec_idp phomotopy.rfl H = H :=
|
||||
!phomotopy_rec_eq_phomotopy_of_eq
|
||||
|
||||
definition phomotopy_rec_idp'_refl (Q : Π ⦃k' : ppi P p₀⦄, (k ~* k') → (k = k') → Type)
|
||||
(q : Q phomotopy.rfl idp) :
|
||||
phomotopy_rec_idp' Q q phomotopy.rfl = transport (Q phomotopy.rfl) !eq_of_phomotopy_refl⁻¹ q :=
|
||||
!phomotopy_rec_idp_refl
|
||||
|
||||
/- maps out of or into contractible types -/
|
||||
definition phomotopy_of_is_contr_cod [constructor] (k l : ppi P p₀) [Πa, is_contr (P a)] :
|
||||
k ~* l :=
|
||||
phomotopy.mk (λa, !eq_of_is_contr) !eq_of_is_contr
|
||||
|
||||
definition phomotopy_of_is_contr_cod_pmap [constructor] (f g : A →* B) [is_contr B] : f ~* g :=
|
||||
phomotopy_of_is_contr_cod f g
|
||||
|
||||
definition phomotopy_of_is_contr_dom [constructor] (k l : ppi P p₀) [is_contr A] : k ~* l :=
|
||||
begin
|
||||
fapply phomotopy.mk,
|
||||
{ intro a, exact eq_of_pathover_idp (change_path !is_prop.elim
|
||||
(apd k !is_prop.elim ⬝op respect_pt k ⬝ (respect_pt l)⁻¹ ⬝o apd l !is_prop.elim)) },
|
||||
rewrite [▸*, +is_prop_elim_self, +apd_idp, cono_idpo],
|
||||
refine ap (λx, eq_of_pathover_idp (change_path x _)) !is_prop_elim_self ◾ idp ⬝ _,
|
||||
xrewrite [change_path_idp, idpo_concato_eq, inv_con_cancel_right],
|
||||
end
|
||||
|
||||
/- adjunction between (-)₊ : Type → Type* and pType.carrier : Type* → Type -/
|
||||
definition pmap_equiv_left (A : Type) (B : Type*) : A₊ →* B ≃ (A → B) :=
|
||||
begin
|
||||
|
|
|
@ -18,7 +18,7 @@ import algebra.homotopy_group eq2
|
|||
open pointed eq unit is_trunc trunc nat group is_equiv equiv sigma function bool
|
||||
|
||||
namespace pointed
|
||||
variables {A B C : Type*}
|
||||
variables {A B C : Type*} {P : A → Type} {p₀ : P pt} {k k' l m n : ppi P p₀}
|
||||
|
||||
section psquare
|
||||
/-
|
||||
|
@ -134,14 +134,35 @@ namespace pointed
|
|||
|
||||
definition punit_pmap_phomotopy [constructor] {A : Type*} (f : punit →* A) :
|
||||
f ~* pconst punit A :=
|
||||
!phomotopy_of_is_contr_dom
|
||||
|
||||
definition punit_ppi [constructor] (P : punit → Type*) (p₀ : P ⋆) : ppi P p₀ :=
|
||||
begin
|
||||
fapply phomotopy.mk,
|
||||
{ intro u, induction u, exact respect_pt f },
|
||||
{ reflexivity }
|
||||
fapply ppi.mk, intro u, induction u, exact p₀,
|
||||
reflexivity
|
||||
end
|
||||
|
||||
definition punit_ppi_phomotopy [constructor] {P : punit → Type*} {p₀ : P ⋆} (f : ppi P p₀) :
|
||||
f ~* punit_ppi P p₀ :=
|
||||
!phomotopy_of_is_contr_dom
|
||||
|
||||
definition is_contr_punit_ppi (P : punit → Type*) (p₀ : P ⋆) : is_contr (ppi P p₀) :=
|
||||
is_contr.mk (punit_ppi P p₀) (λf, eq_of_phomotopy (punit_ppi_phomotopy f)⁻¹*)
|
||||
|
||||
definition is_contr_punit_pmap (A : Type*) : is_contr (punit →* A) :=
|
||||
is_contr.mk (pconst punit A) (λf, eq_of_phomotopy (punit_pmap_phomotopy f)⁻¹*)
|
||||
!is_contr_punit_ppi
|
||||
|
||||
-- definition phomotopy_eq_equiv (h₁ h₂ : k ~* l) :
|
||||
-- (h₁ = h₂) ≃ Σ(p : to_homotopy h₁ ~ to_homotopy h₂),
|
||||
-- whisker_right (respect_pt l) (p pt) ⬝ to_homotopy_pt h₂ = to_homotopy_pt h₁ :=
|
||||
-- begin
|
||||
-- refine !ppi_eq_equiv ⬝e !phomotopy.sigma_char ⬝e sigma_equiv_sigma_right _,
|
||||
-- intro p,
|
||||
-- end
|
||||
|
||||
/- Short term TODO: generalize to dependent maps (use ppi_eq_equiv?)
|
||||
Long term TODO: use homotopies between pointed homotopies, not equalities
|
||||
-/
|
||||
|
||||
definition phomotopy_eq_equiv {A B : Type*} {f g : A →* B} (h k : f ~* g) :
|
||||
(h = k) ≃ Σ(p : to_homotopy h ~ to_homotopy k),
|
||||
|
@ -173,12 +194,11 @@ namespace pointed
|
|||
(q : square (to_homotopy_pt h) (to_homotopy_pt k) (whisker_right (respect_pt g) (p pt)) idp) : h = k :=
|
||||
phomotopy_eq p (eq_of_square q)⁻¹
|
||||
|
||||
definition trans_refl {A B : Type*} {f g : A →* B} (p : f ~* g) : p ⬝* phomotopy.refl g = p :=
|
||||
definition trans_refl (p : k ~* l) : p ⬝* phomotopy.rfl = p :=
|
||||
begin
|
||||
induction A with A a₀, induction B with B b₀,
|
||||
induction f with f f₀, induction g with g g₀, induction p with p p₀,
|
||||
esimp at *, induction g₀, induction p₀,
|
||||
reflexivity
|
||||
induction A with A a₀,
|
||||
induction k with k k₀, induction l with l l₀, induction p with p p₀', esimp at * ⊢,
|
||||
induction l₀, induction p₀', reflexivity,
|
||||
end
|
||||
|
||||
definition eq_of_phomotopy_trans {X Y : Type*} {f g h : X →* Y} (p : f ~* g) (q : g ~* h) :
|
||||
|
@ -188,77 +208,66 @@ namespace pointed
|
|||
exact ap eq_of_phomotopy !trans_refl ⬝ whisker_left _ !eq_of_phomotopy_refl⁻¹
|
||||
end
|
||||
|
||||
definition refl_trans {A B : Type*} {f g : A →* B} (p : f ~* g) : phomotopy.refl f ⬝* p = p :=
|
||||
definition refl_trans (p : k ~* l) : phomotopy.rfl ⬝* p = p :=
|
||||
begin
|
||||
induction p using phomotopy_rec_idp,
|
||||
induction A with A a₀, induction B with B b₀,
|
||||
induction f with f f₀, esimp at *, induction f₀,
|
||||
reflexivity
|
||||
apply trans_refl
|
||||
end
|
||||
|
||||
definition trans_assoc {A B : Type*} {f g h i : A →* B} (p : f ~* g) (q : g ~* h)
|
||||
(r : h ~* i) : p ⬝* q ⬝* r = p ⬝* (q ⬝* r) :=
|
||||
definition trans_assoc (p : k ~* l) (q : l ~* m) (r : m ~* n) : p ⬝* q ⬝* r = p ⬝* (q ⬝* r) :=
|
||||
begin
|
||||
induction r using phomotopy_rec_idp,
|
||||
induction q using phomotopy_rec_idp,
|
||||
induction p using phomotopy_rec_idp,
|
||||
induction B with B b₀,
|
||||
induction f with f f₀, esimp at *, induction f₀,
|
||||
induction k with k k₀, induction k₀,
|
||||
reflexivity
|
||||
end
|
||||
|
||||
definition refl_symm {A B : Type*} (f : A →* B) : phomotopy.rfl⁻¹* = phomotopy.refl f :=
|
||||
definition refl_symm : phomotopy.rfl⁻¹* = phomotopy.refl k :=
|
||||
begin
|
||||
induction B with B b₀,
|
||||
induction f with f f₀, esimp at *, induction f₀,
|
||||
induction k with k k₀, induction k₀,
|
||||
reflexivity
|
||||
end
|
||||
|
||||
definition symm_symm {A B : Type*} {f g : A →* B} (p : f ~* g) : p⁻¹*⁻¹* = p :=
|
||||
phomotopy_eq (λa, !inv_inv)
|
||||
definition symm_symm (p : k ~* l) : p⁻¹*⁻¹* = p :=
|
||||
begin
|
||||
induction p using phomotopy_rec_idp, induction f with f f₀, induction B with B b₀,
|
||||
esimp at *, induction f₀, reflexivity
|
||||
induction p using phomotopy_rec_idp, induction k with k k₀, induction k₀, reflexivity
|
||||
end
|
||||
|
||||
definition trans_right_inv {A B : Type*} {f g : A →* B} (p : f ~* g) : p ⬝* p⁻¹* = phomotopy.rfl :=
|
||||
definition trans_right_inv (p : k ~* l) : p ⬝* p⁻¹* = phomotopy.rfl :=
|
||||
begin
|
||||
induction p using phomotopy_rec_idp, exact !refl_trans ⬝ !refl_symm
|
||||
end
|
||||
|
||||
definition trans_left_inv {A B : Type*} {f g : A →* B} (p : f ~* g) : p⁻¹* ⬝* p = phomotopy.rfl :=
|
||||
definition trans_left_inv (p : k ~* l) : p⁻¹* ⬝* p = phomotopy.rfl :=
|
||||
begin
|
||||
induction p using phomotopy_rec_idp, exact !trans_refl ⬝ !refl_symm
|
||||
end
|
||||
|
||||
definition trans2 {A B : Type*} {f g h : A →* B} {p p' : f ~* g} {q q' : g ~* h}
|
||||
(r : p = p') (s : q = q') : p ⬝* q = p' ⬝* q' :=
|
||||
definition trans2 {p p' : k ~* l} {q q' : l ~* m} (r : p = p') (s : q = q') : p ⬝* q = p' ⬝* q' :=
|
||||
ap011 phomotopy.trans r s
|
||||
|
||||
definition pcompose3 {A B C : Type*} {g g' : B →* C} {f f' : A →* B}
|
||||
{p p' : g ~* g'} {q q' : f ~* f'} (r : p = p') (s : q = q') : p ◾* q = p' ◾* q' :=
|
||||
ap011 pcompose2 r s
|
||||
|
||||
definition symm2 {A B : Type*} {f g : A →* B} {p p' : f ~* g} (r : p = p') : p⁻¹* = p'⁻¹* :=
|
||||
definition symm2 {p p' : k ~* l} (r : p = p') : p⁻¹* = p'⁻¹* :=
|
||||
ap phomotopy.symm r
|
||||
|
||||
infixl ` ◾** `:80 := pointed.trans2
|
||||
infixl ` ◽* `:81 := pointed.pcompose3
|
||||
postfix `⁻²**`:(max+1) := pointed.symm2
|
||||
|
||||
definition trans_symm {A B : Type*} {f g h : A →* B} (p : f ~* g) (q : g ~* h) :
|
||||
(p ⬝* q)⁻¹* = q⁻¹* ⬝* p⁻¹* :=
|
||||
definition trans_symm (p : k ~* l) (q : l ~* m) : (p ⬝* q)⁻¹* = q⁻¹* ⬝* p⁻¹* :=
|
||||
begin
|
||||
induction p using phomotopy_rec_idp, induction q using phomotopy_rec_idp,
|
||||
exact !trans_refl⁻²** ⬝ !trans_refl⁻¹ ⬝ idp ◾** !refl_symm⁻¹
|
||||
end
|
||||
|
||||
definition phwhisker_left {A B : Type*} {f g h : A →* B} (p : f ~* g) {q q' : g ~* h}
|
||||
(s : q = q') : p ⬝* q = p ⬝* q' :=
|
||||
definition phwhisker_left (p : k ~* l) {q q' : l ~* m} (s : q = q') : p ⬝* q = p ⬝* q' :=
|
||||
idp ◾** s
|
||||
|
||||
definition phwhisker_right {A B : Type*} {f g h : A →* B} {p p' : f ~* g} (q : g ~* h)
|
||||
(r : p = p') : p ⬝* q = p' ⬝* q :=
|
||||
definition phwhisker_right {p p' : k ~* l} (q : l ~* m) (r : p = p') : p ⬝* q = p' ⬝* q :=
|
||||
r ◾** idp
|
||||
|
||||
definition pwhisker_left_refl {A B C : Type*} (g : B →* C) (f : A →* B) :
|
||||
|
@ -325,36 +334,36 @@ namespace pointed
|
|||
refine ap (pwhisker_right f) !refl_symm ⬝ !pwhisker_right_refl ⬝ !refl_symm⁻¹
|
||||
end
|
||||
|
||||
definition trans_eq_of_eq_symm_trans {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h}
|
||||
{r : f ~* h} (s : q = p⁻¹* ⬝* r) : p ⬝* q = r :=
|
||||
definition trans_eq_of_eq_symm_trans {p : k ~* l} {q : l ~* m} {r : k ~* m} (s : q = p⁻¹* ⬝* r) :
|
||||
p ⬝* q = r :=
|
||||
idp ◾** s ⬝ !trans_assoc⁻¹ ⬝ trans_right_inv p ◾** idp ⬝ !refl_trans
|
||||
|
||||
definition eq_symm_trans_of_trans_eq {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h}
|
||||
{r : f ~* h} (s : p ⬝* q = r) : q = p⁻¹* ⬝* r :=
|
||||
definition eq_symm_trans_of_trans_eq {p : k ~* l} {q : l ~* m} {r : k ~* m} (s : p ⬝* q = r) :
|
||||
q = p⁻¹* ⬝* r :=
|
||||
!refl_trans⁻¹ ⬝ !trans_left_inv⁻¹ ◾** idp ⬝ !trans_assoc ⬝ idp ◾** s
|
||||
|
||||
definition trans_eq_of_eq_trans_symm {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h}
|
||||
{r : f ~* h} (s : p = r ⬝* q⁻¹*) : p ⬝* q = r :=
|
||||
definition trans_eq_of_eq_trans_symm {p : k ~* l} {q : l ~* m} {r : k ~* m} (s : p = r ⬝* q⁻¹*) :
|
||||
p ⬝* q = r :=
|
||||
s ◾** idp ⬝ !trans_assoc ⬝ idp ◾** trans_left_inv q ⬝ !trans_refl
|
||||
|
||||
definition eq_trans_symm_of_trans_eq {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h}
|
||||
{r : f ~* h} (s : p ⬝* q = r) : p = r ⬝* q⁻¹* :=
|
||||
definition eq_trans_symm_of_trans_eq {p : k ~* l} {q : l ~* m} {r : k ~* m} (s : p ⬝* q = r) :
|
||||
p = r ⬝* q⁻¹* :=
|
||||
!trans_refl⁻¹ ⬝ idp ◾** !trans_right_inv⁻¹ ⬝ !trans_assoc⁻¹ ⬝ s ◾** idp
|
||||
|
||||
definition eq_trans_of_symm_trans_eq {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h}
|
||||
{r : f ~* h} (s : p⁻¹* ⬝* r = q) : r = p ⬝* q :=
|
||||
definition eq_trans_of_symm_trans_eq {p : k ~* l} {q : l ~* m} {r : k ~* m} (s : p⁻¹* ⬝* r = q) :
|
||||
r = p ⬝* q :=
|
||||
!refl_trans⁻¹ ⬝ !trans_right_inv⁻¹ ◾** idp ⬝ !trans_assoc ⬝ idp ◾** s
|
||||
|
||||
definition symm_trans_eq_of_eq_trans {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h}
|
||||
{r : f ~* h} (s : r = p ⬝* q) : p⁻¹* ⬝* r = q :=
|
||||
definition symm_trans_eq_of_eq_trans {p : k ~* l} {q : l ~* m} {r : k ~* m} (s : r = p ⬝* q) :
|
||||
p⁻¹* ⬝* r = q :=
|
||||
idp ◾** s ⬝ !trans_assoc⁻¹ ⬝ trans_left_inv p ◾** idp ⬝ !refl_trans
|
||||
|
||||
definition eq_trans_of_trans_symm_eq {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h}
|
||||
{r : f ~* h} (s : r ⬝* q⁻¹* = p) : r = p ⬝* q :=
|
||||
definition eq_trans_of_trans_symm_eq {p : k ~* l} {q : l ~* m} {r : k ~* m} (s : r ⬝* q⁻¹* = p) :
|
||||
r = p ⬝* q :=
|
||||
!trans_refl⁻¹ ⬝ idp ◾** !trans_left_inv⁻¹ ⬝ !trans_assoc⁻¹ ⬝ s ◾** idp
|
||||
|
||||
definition trans_symm_eq_of_eq_trans {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h}
|
||||
{r : f ~* h} (s : r = p ⬝* q) : r ⬝* q⁻¹* = p :=
|
||||
definition trans_symm_eq_of_eq_trans {p : k ~* l} {q : l ~* m} {r : k ~* m} (s : r = p ⬝* q) :
|
||||
r ⬝* q⁻¹* = p :=
|
||||
s ◾** idp ⬝ !trans_assoc ⬝ idp ◾** trans_right_inv q ⬝ !trans_refl
|
||||
|
||||
section phsquare
|
||||
|
@ -362,7 +371,7 @@ namespace pointed
|
|||
Squares of pointed homotopies
|
||||
-/
|
||||
|
||||
variables {f f' f₀₀ f₂₀ f₄₀ f₀₂ f₂₂ f₄₂ f₀₄ f₂₄ f₄₄ : A →* B}
|
||||
variables {f f' f₀₀ f₂₀ f₄₀ f₀₂ f₂₂ f₄₂ f₀₄ f₂₄ f₄₄ : ppi P p₀}
|
||||
{p₁₀ : f₀₀ ~* f₂₀} {p₃₀ : f₂₀ ~* f₄₀}
|
||||
{p₀₁ : f₀₀ ~* f₀₂} {p₂₁ : f₂₀ ~* f₂₂} {p₄₁ : f₄₀ ~* f₄₂}
|
||||
{p₁₂ : f₀₂ ~* f₂₂} {p₃₂ : f₂₂ ~* f₄₂}
|
||||
|
@ -495,6 +504,13 @@ namespace pointed
|
|||
!pwhisker_left_refl⁻¹ ◾** !pwhisker_right_refl⁻¹
|
||||
end
|
||||
|
||||
end phsquare
|
||||
|
||||
section nondep_phsquare
|
||||
|
||||
variables {f f' f₀₀ f₂₀ f₀₂ f₂₂ : A →* B}
|
||||
{p₁₀ : f₀₀ ~* f₂₀} {p₀₁ : f₀₀ ~* f₀₂} {p₂₁ : f₂₀ ~* f₂₂} {p₁₂ : f₀₂ ~* f₂₂}
|
||||
|
||||
definition pwhisker_left_phsquare (f : B →* C) (p : phsquare p₁₀ p₁₂ p₀₁ p₂₁) :
|
||||
phsquare (pwhisker_left f p₁₀) (pwhisker_left f p₁₂)
|
||||
(pwhisker_left f p₀₁) (pwhisker_left f p₂₁) :=
|
||||
|
@ -505,9 +521,9 @@ namespace pointed
|
|||
(pwhisker_right f p₀₁) (pwhisker_right f p₂₁) :=
|
||||
!pwhisker_right_trans⁻¹ ⬝ ap (pwhisker_right f) p ⬝ !pwhisker_right_trans
|
||||
|
||||
end phsquare
|
||||
end nondep_phsquare
|
||||
|
||||
definition phomotopy_of_eq_con {A B : Type*} {f g h : A →* B} (p : f = g) (q : g = h) :
|
||||
definition phomotopy_of_eq_con (p : k = l) (q : l = m) :
|
||||
phomotopy_of_eq (p ⬝ q) = phomotopy_of_eq p ⬝* phomotopy_of_eq q :=
|
||||
begin induction q, induction p, exact !trans_refl⁻¹ end
|
||||
|
||||
|
|
|
@ -32,6 +32,9 @@ namespace unit
|
|||
|
||||
notation `unit*` := punit
|
||||
|
||||
definition is_contr_punit [instance] : is_contr punit :=
|
||||
is_contr_unit
|
||||
|
||||
definition unit_arrow_eq {X : Type} (f : unit → X) : (λx, f ⋆) = f :=
|
||||
by apply eq_of_homotopy; intro u; induction u; reflexivity
|
||||
|
||||
|
|
Loading…
Reference in a new issue