feat(library/blast/unit): conjunctive conclusions

This commit is contained in:
Daniel Selsam 2015-11-24 22:45:39 -08:00
parent eac1ebbf72
commit ca71a2eb12
4 changed files with 91 additions and 27 deletions

View file

@ -32,11 +32,20 @@ struct unit_branch_extension : public branch_extension {
virtual ~unit_branch_extension() {}
virtual branch_extension * clone() override { return new unit_branch_extension(*this); }
void insert_disjunction(expr const & e, hypothesis_idx hidx) {
void insert(expr const & e, hypothesis_idx hidx, bool neg) {
expr A, B;
if (is_or(e, A, B)) {
insert_disjunction(A, hidx);
insert_disjunction(B, hidx);
lean_assert(!neg);
insert(A, hidx, neg);
insert(B, hidx, neg);
} else if (is_and(e, A, B)) {
lean_assert(neg);
insert(A, hidx, neg);
insert(B, hidx, neg);
} else if (neg) {
expr not_e;
if (blast::is_not(e, not_e)) m_lemma_map.insert(not_e, hidx);
else m_lemma_map.insert(get_app_builder().mk_not(e), hidx);
} else {
m_lemma_map.insert(e, hidx);
}
@ -51,13 +60,11 @@ struct unit_branch_extension : public branch_extension {
bool has_antecedent = false;
while (is_pi(type) && is_prop(binding_domain(type)) && closed(binding_body(type))) {
has_antecedent = true;
insert_disjunction(binding_domain(type), hidx);
insert(binding_domain(type), hidx, false);
type = binding_body(type);
}
if (has_antecedent && is_prop(type)) {
expr not_type;
if (blast::is_not(type, not_type)) m_lemma_map.insert(not_type, hidx);
else m_lemma_map.insert(get_app_builder().mk_not(type), hidx);
insert(type, hidx, true);
}
}
@ -71,6 +78,7 @@ public:
hypothesis_idx const * find_fact(expr const & e) { return m_fact_map.find(e); }
void erase_fact(expr const & e) { return m_fact_map.erase(e); }
/* Returns a proof of the disjunction [e] */
optional<expr> find_live_fact_in_disjunction(expr const & e) {
expr A, B;
if (is_or(e, A, B)) {
@ -96,6 +104,41 @@ public:
}
}
}
/* Returns a proof of [false], by either applying a projection of [proof] to a hypothesis or vice versa. */
optional<expr> find_live_disproof_of_conjunction(expr const & e, expr const & proof) {
expr A, B;
if (is_and(e, A, B)) {
if (auto A_false = find_live_disproof_of_conjunction(A, get_app_builder().mk_app(get_and_elim_left_name(), {A, B, proof}))) {
return some_expr(*A_false);
} else if (auto B_false = find_live_disproof_of_conjunction(B, get_app_builder().mk_app(get_and_elim_right_name(), {A, B, proof}))) {
return some_expr(*B_false);
} else {
return none_expr();
}
} else {
expr not_e;
bool not_e_is_not = false;
if (!blast::is_not(e, not_e)) {
not_e_is_not = true;
not_e = get_app_builder().mk_not(e);
}
hypothesis_idx const * fact_hidx = find_fact(not_e);
if (fact_hidx) {
hypothesis const & fact_h = curr_state().get_hypothesis_decl(*fact_hidx);
if (fact_h.is_dead()) {
erase_fact(e);
return none_expr();
} else {
if (not_e_is_not) return some_expr(mk_app(fact_h.get_self(), proof));
else return some_expr(mk_app(proof, fact_h.get_self()));
}
} else {
return none_expr();
}
}
}
};
void initialize_unit_action() {
@ -136,27 +179,13 @@ action_result unit_pi(expr const & _type, expr const & proof) {
curr_state().mk_hypothesis(type, new_hypothesis);
return action_result::new_branch();
} else if (is_prop(type)) {
expr not_type;
if (blast::is_not(type, not_type)) {
optional<expr> fact = ext.find_live_fact_in_disjunction(not_type);
if (fact) {
// TODO(dhs): if classical, use double negation elimination
curr_state().mk_hypothesis(get_app_builder().mk_not(infer_type(local)),
Fun(local, mk_app(new_hypothesis, *fact)));
return action_result::new_branch();
} else {
return action_result::failed();
}
optional<expr> disproof = ext.find_live_disproof_of_conjunction(type, new_hypothesis);
if (disproof) {
curr_state().mk_hypothesis(get_app_builder().mk_not(infer_type(local)),
Fun(local, *disproof));
return action_result::new_branch();
} else {
not_type = get_app_builder().mk_not(type);
optional<expr> fact = ext.find_live_fact_in_disjunction(not_type);
if (fact) {
curr_state().mk_hypothesis(get_app_builder().mk_not(infer_type(local)),
Fun(local, mk_app(*fact, new_hypothesis)));
return action_result::new_branch();
} else {
return action_result::failed();
}
return action_result::failed();
}
} else {
return action_result::failed();

View file

@ -8,6 +8,19 @@ Author: Daniel Selsam
namespace lean {
namespace blast {
/* \brief Propagates lemmas of the form
<tt>(A11 \/ ... \/ ...) -> ... -> (Am1 \/ ... \/ ...) -> (B1 /\ ... /\ ...)</tt>
where each <tt>A</tt> and <tt>B</tt> can be any propositions, and can optionally
be negated.
If we can find one disjunct for every antecedent, we instantiate the lemma
fully. On the other hand, if we can find one disjunct for all but one
antecedents, and one fact that disproves the conjunctive conclusion,
we conclude the negation of the missing disjunctive argument.
Remark: conjunctions in the antecedents and disjunctions in the conclusion are
both treated as monolithic propositions, so some pre-processing may be necessary.
*/
action_result unit_action(unsigned hidx);
void initialize_unit_action();

View file

@ -0,0 +1,12 @@
-- Basic (propositional) forward chaining with conjunctive conclusions
constants (A B C D E : Prop)
set_option pp.all true
definition lemma1 : B → (A → (¬ B) ∧ C) → ¬ A := by blast
definition lemma2 : ¬ B → (A → B ∧ C) → ¬ A := by blast
definition lemma3 : B → (A → C ∧ (¬ B)) → ¬ A := by blast
definition lemma4 : ¬ B → (A → C ∧ B) → ¬ A := by blast
definition lemma5 : B → (A → (¬ B) ∧ E ∧ C) → ¬ A := by blast
definition lemma6 : ¬ B → (A → E ∧ B ∧ C) → ¬ A := by blast
definition lemma7 : B → (A → E ∧ C ∧ (¬ B)) → ¬ A := by blast
definition lemma8 : ¬ B → (A → C ∧ B ∧ E) → ¬ A := by blast

View file

@ -0,0 +1,10 @@
-- Basic (propositional) forward chaining with disjunctive antecedents and conjunctive conclusions
constants (A B C D E F : Prop)
definition lemma1 : B → (A E → (¬ B) ∧ C) → ¬ (A E) := by blast
definition lemma2 : ¬ B → (A E → B ∧ C) → ¬ (A E) := by blast
definition lemma3 : A → ¬ D → (A E → B → C ∧ D) → ¬ B := by blast
definition lemma4 : A → ¬ E → (A → B → E ∧ F) → ¬ B := by blast
definition lemma5 : (A → B) → ¬ B → ¬ A := by blast
definition lemma6 : (A → B ∧ C) → ¬ B → ¬ A := by blast