refactor(hott/algebra/category/adjoint): rewrite expensive proof

see #815
This commit is contained in:
Leonardo de Moura 2015-09-01 16:57:49 -07:00
parent a8964adb9c
commit cae2271818

View file

@ -68,57 +68,74 @@ namespace category
definition is_iso_counit [instance] (F : C ⇒ D) [H : is_equivalence F] : is_iso (counit F) := definition is_iso_counit [instance] (F : C ⇒ D) [H : is_equivalence F] : is_iso (counit F) :=
!is_equivalence.is_iso_counit !is_equivalence.is_iso_counit
-- theorem is_hprop_is_left_adjoint {C : Category} {D : Precategory} (F : C ⇒ D) theorem is_hprop_is_left_adjoint {C : Category} {D : Precategory} (F : C ⇒ D)
-- : is_hprop (is_left_adjoint F) := : is_hprop (is_left_adjoint F) :=
-- begin begin
-- apply is_hprop.mk, apply is_hprop.mk,
-- intro G G', cases G with G η ε H K, cases G' with G' η' ε' H' K', intro G G', cases G with G η ε H K, cases G' with G' η' ε' H' K',
-- assert lem : Π(p : G = G'), p ▸ η = η' → p ▸ ε = ε' assert lem₁ : Π(p : G = G'), p ▸ η = η' → p ▸ ε = ε'
-- → is_left_adjoint.mk G η ε H K = is_left_adjoint.mk G' η' ε' H' K', → is_left_adjoint.mk G η ε H K = is_left_adjoint.mk G' η' ε' H' K',
-- { intros p q r, induction p, induction q, induction r, esimp, { intros p q r, induction p, induction q, induction r, esimp,
-- apply apd011 (is_left_adjoint.mk G η ε) !is_hprop.elim !is_hprop.elim}, apply apd011 (is_left_adjoint.mk G η ε) !is_hprop.elim !is_hprop.elim},
-- fapply lem, assert lem₂ : Π (d : carrier D),
-- { fapply functor.eq_of_pointwise_iso, (to_fun_hom G (natural_map ε' d) ∘
-- { fapply change_natural_map, natural_map η (to_fun_ob G' d)) ∘
-- { exact (G' ∘fn1 ε) ∘n !assoc_natural_rev ∘n (η' ∘1nf G)}, to_fun_hom G' (natural_map ε d) ∘
-- { intro d, exact (G' (ε d) ∘ η' (G d))}, natural_map η' (to_fun_ob G d) = id,
-- { intro d, exact ap (λx, _ ∘ x) !id_left}}, { intro d, esimp,
-- { intro d, fconstructor, rewrite [assoc],
-- { exact (G (ε' d) ∘ η (G' d))}, rewrite [-assoc (G (ε' d))],
-- { krewrite [▸*,assoc,-assoc (G (ε' d))], esimp, rewrite [nf_fn_eq_fn_nf_pt' G' ε η d],
-- krewrite [nf_fn_eq_fn_nf_pt' G' ε η d], esimp, rewrite [assoc],
-- krewrite [assoc,-assoc], esimp, rewrite [-assoc],
-- rewrite [↑functor.compose, -respect_comp G], rewrite [↑functor.compose, -respect_comp G],
-- krewrite [nf_fn_eq_fn_nf_pt ε ε' d,nf_fn_eq_fn_nf_pt η' η (G d),▸*], rewrite [nf_fn_eq_fn_nf_pt ε ε' d,nf_fn_eq_fn_nf_pt η' η (G d),▸*],
-- rewrite [respect_comp G], rewrite [respect_comp G],
-- krewrite [assoc,-assoc (G (ε d))], rewrite [assoc,-assoc (G (ε d))],
-- rewrite [↑functor.compose, -respect_comp G], rewrite [↑functor.compose, -respect_comp G],
-- krewrite [H' (G d)], rewrite [H' (G d)],
-- rewrite [respect_id,id_right], rewrite [respect_id,id_right],
-- apply K}, apply K},
-- { krewrite [▸*,assoc,-assoc (G' (ε d))], assert lem₃ : Π (d : carrier D),
-- krewrite [nf_fn_eq_fn_nf_pt' G ε' η' d], (to_fun_hom G' (natural_map ε d) ∘
-- krewrite [assoc,-assoc], natural_map η' (to_fun_ob G d)) ∘
-- rewrite [↑functor.compose, -respect_comp G'], to_fun_hom G (natural_map ε' d) ∘
-- krewrite [nf_fn_eq_fn_nf_pt ε' ε d,nf_fn_eq_fn_nf_pt η η' (G' d),▸*], natural_map η (to_fun_ob G' d) = id,
-- rewrite [respect_comp G'], { intro d, esimp,
-- krewrite [assoc,-assoc (G' (ε' d))], rewrite [assoc, -assoc (G' (ε d))],
-- rewrite [↑functor.compose, -respect_comp G'], esimp, rewrite [nf_fn_eq_fn_nf_pt' G ε' η' d],
-- krewrite [H (G' d)], esimp, rewrite [assoc], esimp, rewrite [-assoc],
-- rewrite [respect_id,id_right], rewrite [↑functor.compose, -respect_comp G'],
-- apply K'}}}, rewrite [nf_fn_eq_fn_nf_pt ε' ε d,nf_fn_eq_fn_nf_pt η η' (G' d)],
-- { clear lem, refine transport_hom_of_eq_right _ η ⬝ _, esimp,
-- krewrite hom_of_eq_compose_right, rewrite [respect_comp G'],
-- rewrite functor.hom_of_eq_eq_of_pointwise_iso, rewrite [assoc,-assoc (G' (ε' d))],
-- apply nat_trans_eq, intro c, esimp, rewrite [↑functor.compose, -respect_comp G'],
-- refine !assoc⁻¹ ⬝ ap (λx, _ ∘ x) (nf_fn_eq_fn_nf_pt η η' c) ⬝ !assoc ⬝ _, rewrite [H (G' d)],
-- rewrite [▸*,-respect_comp G',H c,respect_id G',id_left]}, rewrite [respect_id,id_right],
-- { clear lem, refine transport_hom_of_eq_left _ ε ⬝ _, apply K'},
-- krewrite inv_of_eq_compose_left, fapply lem₁,
-- rewrite functor.inv_of_eq_eq_of_pointwise_iso, { fapply functor.eq_of_pointwise_iso,
-- apply nat_trans_eq, intro d, esimp, { fapply change_natural_map,
-- rewrite [respect_comp,assoc,nf_fn_eq_fn_nf_pt ε' ε d,-assoc,▸*,H (G' d),id_right]}, { exact (G' ∘fn1 ε) ∘n !assoc_natural_rev ∘n (η' ∘1nf G)},
-- end { intro d, exact (G' (ε d) ∘ η' (G d))},
{ intro d, exact ap (λx, _ ∘ x) !id_left}},
{ intro d, fconstructor,
{ exact (G (ε' d) ∘ η (G' d))},
{ exact lem₂ d },
{ exact lem₃ d }}},
{ clear lem₁, refine transport_hom_of_eq_right _ η ⬝ _,
krewrite hom_of_eq_compose_right,
rewrite functor.hom_of_eq_eq_of_pointwise_iso,
apply nat_trans_eq, intro c, esimp,
refine !assoc⁻¹ ⬝ ap (λx, _ ∘ x) (nf_fn_eq_fn_nf_pt η η' c) ⬝ !assoc ⬝ _,
esimp, rewrite [-respect_comp G',H c,respect_id G',id_left]},
{ clear lem₁, refine transport_hom_of_eq_left _ ε ⬝ _,
krewrite inv_of_eq_compose_left,
rewrite functor.inv_of_eq_eq_of_pointwise_iso,
apply nat_trans_eq, intro d, esimp,
rewrite [respect_comp,assoc,nf_fn_eq_fn_nf_pt ε' ε d,-assoc,▸*,H (G' d),id_right]}
end
definition full_of_fully_faithful (H : fully_faithful F) : full F := definition full_of_fully_faithful (H : fully_faithful F) : full F :=
λc c', is_surjective.mk (λg, tr (fiber.mk ((@(to_fun_hom F) c c')⁻¹ᶠ g) !right_inv)) λc c', is_surjective.mk (λg, tr (fiber.mk ((@(to_fun_hom F) c c')⁻¹ᶠ g) !right_inv))