refactor(library/logic/choice): move prop_decidable instance into namespace 'classical'

This commit is contained in:
Leonardo de Moura 2015-08-12 17:06:15 -07:00
parent b4024982a2
commit cb9830beaf
11 changed files with 15 additions and 13 deletions

View file

@ -6,7 +6,7 @@ Author: Jeremy Avigad
Set-based version of group_bigops.
-/
import .group_bigops data.set.finite
open set
open set classical
namespace algebra
namespace set

View file

@ -65,6 +65,10 @@ definition not_mem (a : hf) (s : hf) : Prop := ¬ a ∈ s
infix `∉` := not_mem
open decidable
protected definition decidable_mem [instance] : ∀ a s, decidable (a ∈ s) :=
λ a s, finset.decidable_mem a (to_finset s)
lemma not_mem_empty (a : hf) : a ∉ ∅ :=
begin unfold [not_mem, mem, empty], rewrite to_finset_of_finset, apply finset.not_mem_empty end

View file

@ -17,8 +17,7 @@ open -[coercions] rat
local notation 0 := rat.of_num 0
local notation 1 := rat.of_num 1
open -[coercions] nat
open eq.ops
open pnat
open eq.ops pnat classical
local notation 2 := subtype.tag (nat.of_num 2) dec_trivial
local notation 3 := subtype.tag (nat.of_num 3) dec_trivial

View file

@ -12,7 +12,7 @@ and excluded middle.
import data.real.basic data.real.order data.rat data.nat logic.choice
open -[coercions] rat
open -[coercions] nat
open eq.ops pnat
open eq.ops pnat classical
local notation 0 := rat.of_num 0
local notation 1 := rat.of_num 1

View file

@ -6,7 +6,7 @@ Author: Jeremy Avigad
Cardinality of finite sets.
-/
import .finite data.finset.card
open nat
open nat classical
namespace set

View file

@ -7,7 +7,7 @@ Using classical logic, defines an inverse function.
-/
import .function .map
import logic.choice
open eq.ops
open eq.ops classical
namespace set

View file

@ -7,8 +7,8 @@ Filters, following Hölzl, Immler, and Huffman, "Type classes and filters for ma
analysis in Isabelle/HOL".
-/
import data.set.function logic.identities logic.choice algebra.complete_lattice
namespace set
open classical
structure filter (A : Type) :=
(sets : set (set A))

View file

@ -8,7 +8,7 @@ an element s : set A satsifies finite s doesn't mean that we can compute the
a computational representation, use the finset type.
-/
import data.set.function data.finset.to_set logic.choice
open nat
open nat classical
variable {A : Type}

View file

@ -161,9 +161,8 @@ propext (iff.intro
end aux
/- All propositions are decidable -/
section all_decidable
namespace classical
open decidable sum
noncomputable definition decidable_inhabited [instance] [priority 0] (a : Prop) : inhabited (decidable a) :=
inhabited_of_nonempty
(or.elim (em a)
@ -178,4 +177,4 @@ match prop_decidable (nonempty A) with
| inl Hp := sum.inl (inhabited.value (inhabited_of_nonempty Hp))
| inr Hn := sum.inr (λ a, absurd (nonempty.intro a) Hn)
end
end all_decidable
end classical

View file

@ -10,7 +10,7 @@ The excluded middle is being used "behind the scenes" to allow us to write the i
with (∃ a : A, f a = b).
-/
import logic.choice
open function
open function classical
noncomputable definition mk_left_inv {A B : Type} [h : nonempty A] (f : A → B) : B → A :=
λ b : B, if ex : (∃ a : A, f a = b) then some ex else inhabited.value (inhabited_of_nonempty h)

View file

@ -1,4 +1,4 @@
import classical
import classical open classical
eval if true then 1 else 0
attribute prop_decidable [priority 0]
eval if true then 1 else 0